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INTRODUCTION

Breast cancer is the most common female malignancy in the 

western countries and is the second leading cause of malignant deaths. 

A large proportion of breast cancer patients receive post-operative 

radiation therapy aft er conservative surgery and mastectomy to 

decrease locoregional recurrence rates and improve overall survival 

[1,2].Th e irradiated volumes i.e. whole breast, tumoral bed, chest wall, 

regional lymph nodes (internal mammary chain, supra/infraclavicular 

and axillary nodes) could vary, according to international guidelines, 

taking into account patient and tumor characteristics.

Th e duration of radiotherapy strictly depends on the irradiated 

volume, dose/fraction and total dose and lasts between 1 day, in case 

of intraoperative RT, and nearly 7 weeks, in case of conventional 

whole breast RT plus booster dose on surgical bed.

Side eff ects and toxicities widely vary as a consequence of patients 

features and attitudes, irradiated volume, total dose, dose/fraction, 

radiotherapy technique and systemic treatments.

Several grading scales exist to aid in the reproducible quantifi cation 

of acute radiation toxicities. Th e Radiation Th erapy Oncology Group/

European Organization for Research and

Treatment of Cancer (RTOG/EORTC) toxicity criteria and 

National Cancer Institute Common Toxicity Criteria for Adverse 

Events (NCI CTCAE) systems are the most commonly used [3,4]. 

Th is review focuses on the main radiation side eff ects in adjuvant 

breast cancer treatment and discusses the strategies for the prevention 

and management of radiation-related toxicity.

SKIN TOXICITY

Th e eff ects of radiation on skin have been recognized as soon as 

radiation was introduced as a treatment modality [5-7]. Consequently 

researches have begun examining techniques to reduce radiation 

induced skin reactions, aided by the radio-biology evidences on 

fractionation modalities for improving normal tissue repair [6]. Th e 

introduction of the megavoltage units improved the skin sparing if 

compared with orthovoltage ones and consequently reduced toxicity 

[8].

Despite the eff ort, Radiation Dermatitis (RD) still continue to be 

the most common side eff ect of radiotherapy and could condition 

worse cosmesis and subsequently QoL[5].

Radiation aff ects the two main components of skin, epidermis 

and dermis, each of which respond variably to radiation exposure. 

High energy X-Rays leads to DNA breaks within the epidermis 

and dermis causing the so called syndrome of radiation dermatitis 

[6]. Radiation induced DNA damage within the epidermis disrupts 

normal proliferation and diff erentiation of basal keratinocytes, 

leading to the physical barrier lost [9-11].

By the other hand, the eff ects on dermis consists mainly of 

microvascular injury, activating proinfl ammatory cytokines, tTNF 

alfa and transforming growth factor: they contribute in both acute 

and late side eff ects of radiation, starting with infl ammatory edema, 

erythema, desquamation, ulceration, telangiectasia , late tissue 

fi brosis [12-19].

Mechanism of RD developes in a dose dependent manner with 

predictable timing [12,20,21]. Acute skin reactions (defi ned as 

occurring within 30-90 days from radiation exposure) has a dose 

threshold development, starting with erythema at 6-10 Gy up and 

worse toxicity at 40 Gy or higher dose. Nearly around day 10 of 

treatment the re-epithelisation begins and competes with ongoing 

radiation damage to maintain the homeostasis of the epidermal layer. 

Th e majority of symptoms usually relieves in 2-4 weeks aft er the end 

of treatment, hyperpigmentation lasts some more months. Late side 

eff ects can appear months or years aft er the end of therapy [20-24].

RISK FACTORS 

Many risk factors have been identifi ed and categorized in 

treatment and patient related ones.

Treatment related factors

Th e negative impact of adjuvant systemic chemotherapy on 

acute and late toxicity has been spoted out and underlined in studies 

enrolling patients mainly receiving taxanes and/or anthracyclines 

based regimen [25-27], so that the concomitant use of radiotherapy 

and anthracyclines/taxanes based chemotherapy was not 

recommended. 

Surgical approach is crucial for the cosmetic outcome too. Th e 

amount of resected tissue is considered one of the most relevant 

features concerning breast cosmesis. Th e kind of surgery, more 

or less radical, the new oncoplastic techniques and the diff erent 

reconstructive surgery (i.e.expander, prosthesis or fl ap) are strictly 

related to radiotherapy toxicity. Nevertheless no clear data still 

exist on the best sequence of reconstruction and radiotherapy, the 

safer break between these procedures and the more appropriate 

radiotherapy techniques in this group of patients [28,29].

Th e evolution in radiotherapy delivery techniques, from 
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2dimension (2D) to 3D treatment planning, resultes in signifi cantly 

less acute and long term toxicity. Th e 3D technique, taking into 

account changes in breast contour, reduces radiation induced skin 

reaction. Data from retrospective studies suggest that large dose 

inhomogeneity, occurring with the 2D techniques, predisposes to 

more severe acute skin reactions [30-33].

Advanced 3D techniques, Volumetric Arc Th erapy (VMAT) and 

Intensity Modulated RadioTh erapy (IMRT) are the main methods 

that allow multiple radiation fi elds for decreasing breast dose 

inhomogeneity. Prospective trials of 3D and IMRT techniques have 

shown decreased rates of acute and late radiation skin toxicity [34-

36]. 

Radiotherapy delivered to patient in prone position could 

improve the dose distribution, reduce radiation hotspots and lower 

the incidence of breast dermatitis including moist desquamation [37].

Alternative treatment schedules, such as hypofractionated breast 

irradiation, is increasingly used [38] and safe in terms of local control 

and acute/late toxicity profi le without negative impact on cosmesis. 

Th ree randomized trials (START A, START B and Canadian), which 

compared standard vs Hypofractionation (HF) in post-operative 

radiotherapy, suggest that HF reduces the rate of dermatitis, pruritus 

and hyperpigmentation [39,41]. In a recently published study [42] the 

authors conclude that HF is associated with a signifi cantly reduction 

of severe acute skin reaction compared to the standard fractionation 

one: Grade 2 skin reactions were observed in 19% of the patients 

treated with CF compared to 2 % treated with HF.

Even and moreover with such a fractionation, large dose 

inhomogeneity (V >107%) has to be carefully detected and corrected 

for avoiding severe acute skin reactions.

Th e role of boost on cosmesis is still controversial, but a correlation 

with higher late toxicity is widely demonstrated by the results of the 

EORTC trial 22881-10882 [43,44]. 

Accelerated partial breast Irradiation (APBI) has been introduced 

as an alternative treatment method for selected patients with early 

stage breast cancer. Results concerning cosmetic outcome diff er 

widely, ranging from good/excellent cosmetic results in 90% of the 

patients to 21% unacceptable cosmesis [45]. Th is variability strongly 

depends on the RT technique and moreover randomized trials are 

still ongoing for confi rming the effi  cacy of this treatment in terms of 

local control and toxicity.

Interestingly some authors have investigated time of radiotherapy 

in circadian cycle, suggesting that there are no diff erence on failure 

outcomes between early morning and late aft ernoon radiotherapy 

delivery, but aft ernoon radiotherapy was associated with higher-

grade 2-skin toxicity [46]. 

Patient related factors 

Patient related factors have been investigated too for establishing 

a correlation with radiotherapy toxicity. Age and postmenopausal 

status seem to be correlated with a worse cosmetic outcome [47]. 

Large breast size women have been reported to experience acute skin 

reactions fi ve times more than small breast size ones [48,50]. Body 

mass index is independently associated with increased risk of acute 

skin toxicity too [51,52].

Th e worst skin reactions are seen in inframammary and axillary 

folds, due probably to a greater self bolusing eff ect in these regions 

[52]. Racial diff erences too have been demonstrated to be associated 

with radiation dermatitis, black skin population experiencing a 

higher toxicity [53]. No conclusions can be drawn from existing 

data on the eff ect of smoking on RT related toxicity [51,54]. Genetic 

syndromes, such as Ataxia-Teleangioectasia, Fanconi anemia, etc 

may be associated with higher acute radio sensitivity [55].

STRATEGIES FOR PREVENTION

Th e high incidence of radiation-induced skin reactions has 

generated interest in methods for preventing and eff ectively treating 

such reactions. Although a general consensus among radiotherapy 

centres is lacking, it is generally agreed that the ideal method for 

preventing and minimizing skin reactions is moisturization of the 

irradiated area

Several products have been used for the prevention of radiation-

induced toxicity. Topical steroids like momethasone or bethametasone 

were found to improve the outcome in diminishing dermatitis when 

compared with placebo [56,57]. Non steroidal agents, like sucralfate 

or aqueous crème, aloe vera and hyaluronic acid have failed to show 

any benefi t when tested prospectively [58]. Some other nonsteroidal 

agents like silver sulfadiazine or calendula offi  cinalis have shown to 

result in overall reduced dermatitis, even though these results were 

not replicated in more recent larger trials [59]. Th e barrier products, 

like Mepitel fi lmappears promising in reducing moist desquamation 

rate [60]. 

MANAGEMENT DURING TREATMENT

Lack of high quality evidence and disagreements regarding the 

optimal management of skin toxicity still remain. Skin washing 

with soap and water has showed signifi cant reduction of acute 

erythema and desquamation 6-8 weeks aft er the treatment, the 

authors recommend mild pH –neutral or nonalcaline soaps [61]. An 

important study by Burch [62] challenged the previous assumption 

that products used as deodorants containing aluminum or zinc, 

would increase skin reaction, by demonstrating that there is no 

diff erence between metallic and nonmetallic deodorant products and 

no evidence in worsening skin outcomes with deodorant use [63,64]. 

Mepilex dressing too reduces skin erythema for dermatitis treatment 

[65]. Management of desquamation is also critical, especially the 

moist one. While the dry desquamation is not a cause of concern, the 

moist one should be monitored carefully and closely because it may 

worsen causing fever, infections, smelling, and pain. Th e use of saline 

soaks four times daily is encouraged [66-68], also moisture-retentive, 

barrier ointments aft er each saline soak.

PULMONARY TOXICITY

Lung is one of the relevant Organs at Risk (OaR) in planning 

radiotherapy for breast cancer. Acute and late lung toxicities have 

been widely described as Radiation Pneumonitis (RP) and radiation 

fi brosis. Th e acute one known as an infl ammatory reaction occurring 

four to twelve weeks aft er completion of RT, while the late one is 

usually observed beyond six months [69]. 

Defi nition and grading of RP diff ers depending on the scoring 

system used e.g. grade 2 can be dyspnea, notinterfering with Activities 

Of Daily Living (ADL) according to CTCAE scoring system, 

meanwhile it needs medication with corticosteroids according to 

SWOG scale.

RP refl ects the response to the activation of a rapid cascade of 

genetic and molecular events evolving during a subclinical time, 
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including loss of pneumocytes, increased capillary permeability, 

interstitial and alveolar edema and access of infl ammatory cell into 

the intra-alveolar spaces [70]. Th ese changes are observed on chest X 

rays or Computed Tomography (CT). Th is latter examination allows 

a better evidence of parenchymal changes and better demonstrates 

the changes restricted to the irradiated area. Th e most common 

fi ndings are ground glass opacities and/or airspace consolidation 

[71,72]. Marks et al did not show any association between the 

presence or absence of radiotherapy induced pulmonary symptoms 

and the frequency of radiotherapy induced radiological changes [73]. 

Hernberg et al. reported clinical signs of suspected pneumonia in 

29% of patients with radiological changes on CT, in nearly 68% these 

changes were more common three months aft er radiotherapy [74].

Many specifi c gene loci have been studied as responsibles of a 

greater susceptibility to radiation [75]. Th e association between single 

nucleotide polymorphisms in TGFβ1 gene and risk of RP was studied 

in patients with NSCLC. In multivariate analysis CT/CC genotypes 

of TGFβ1 at rs1982073:T869C were found to be associated with 

a lower risk of RP grades ≥ 2 (P=0.013) and grades ≥ 3 (P=0.007) 

respectively, compared to the TT genotype, aft er adjustment for 

Karnofsky performance status, smoking habit, pulmonary function 

and dosimetrical parameters [76].

Radiation induced lung injury occurs in almost 10-15 % of 

patients treated with adjuvant radiotherapy for breast cancer [77]. 

In retrospective and prospective studies the incidence of lung injury 

varies widely, ranging between 4.5-63 % [78-80], probably due to 

several biases [81]. A meta-analysis on the incidence of early lung 

toxicity in patients treated with a 3D conformal radiotherapy for 

breast cancer analyzed ten diff erent studies and reported the overall 

incidence of clinical and radiological RP as 14% and 42 % respectively 

[82].

It is crucial to minimize radiotherapy related complications as 

most of the breast cancer patients are long survivors. If the incidence 

of symptomatic RP is reduced, not only QoL but also the compliance 

of breast cancer patients may be improved. 

RISK FACTORS 

Several risk factors for radiation induced lung injury have 

been studied including age, BMI, irradiated lung volume, radiation 

dose, central lung distance, pre-radiotherapy functional level and 

concurrent chemotherapy [83-87].

Patient age seems to be the strongest predicting factor for 

radiotherapy lung toxicity [80]. Increased age has been correlated 

with both clinical and radiological lung changes [85]. Many studies 

have suggested that patients older than 55 or 59 years have to be 

treated cautionary with post-operative RT [81]. Furthermore BMI 

have been shown by diff erent authors to be a good indicator of the 

risk of pneumonitis, suggesting a low BMI to be associated with 

higher incidence of symptomatic RP. Conversely some other authors 

did not show a signifi cant association between RP and BMI [88-91]. 

Smoking habits represent another baseline risk factor. 

Association between smoking and lung radiotherapy injury is still 

debated, since published studies showed confl icting results [80]. A 

history of smoking increases the risk of RP as a result of pre-existing 

lung damage, but active smoking seems to protect the lung from 

radiotherapy-induced damage [92].

Pre-treatment lung infl ammation seems to make pulmonary 

tissue more susceptible to radiation damage. Th is hypothesis has 

recently been demonstrated: volumes within the lung (excluding 

tumour) that show an avid uptake of 18F-Deoxyglucose (FDG) before 

radiotherapy are more susceptible to radiation damage. Th erefore, the 

risk of radiation-induced lung toxicity may be decreased by applying 

sophisticated radiotherapy techniques to spare volumes in the lung 

with high FDG uptake [93]. Early lung damage in patients who later 

develop RP can be demonstrated by an increased FDG uptake during 

the fi rst two weeks of irradiation [94].

Dosimetric parameters, total dose, dose per fraction and 

irradiated lung volume are the main predictive factors. Despite the 

improvement of radiotherapy techniques and the increasing use 

of conformal radiation therapy radiation-induced injuries are still 

registrated. 

Recent technique developments, such as IMRT, VMAT, helical 

tomotherapy, Image-Guided Radiotherapy (IGRT), breathing adapted 

techniques, etc have helped to optimize the dose distribution into the 

PTV and to reduce doses to the OAR. Concerning unconventional 

RT schedules, major clinical trials of hypofractionated whole breast 

radiotherapy have reported no signifi cant diff erences in lung injury 

rate [95].

Reported risk of pulmonary toxicity using APBI is low and is 

mainly correlated with the kind of radiotherapy technique; the 3D 

conformal one seems to involve a slightly higher volume of lung in 

comparison to the others [96].

Lung is known to be very sensitive to both dose per fraction and 

total dose so that well defi ned dose parameters are standardized and 

used in daily practice.

Ipsilateral Mean Lung Dose (MLD) and V20 are considered 

the most important ones. MLD values\20 Gy and V20\20 % for the 

ipsilateral lung are considered acceptable in case of whole breast RT. 

A signifi cant relation between V13 and radiological changes on CT 

images was reported [97-99]. Prone position seems to be associated 

with a reduction in the amount of irradiated lung [100].

Ramella et al. [101] showed that adding ipsilateral lung volume 

received 20 Gy (IV20) and ipsilateral lung volume received 30 Gy 

(IV30) to the classical total lung constraints reduced pulmonary 

toxicity in concurrent chemoradiation treatment. Th ey suggested 

that not all beam entrances should be on the ipsilateral lung. A 

conservative approach would be to use the constraint settings IV20 

and IV30 as simple predictive factors of lung injury. According to a 

recent publication IV20 is the greates risk predictor factor [102].

Goldman et al. [103] showed that minimizing the percentage of the 

ipsilateral lung dose to V20 < 30% can signifi cantly reduce moderate 

to severe radiological changes and symptomatic pneumonitis. Lind 

et al. [78,85] concluded that the incidence of short-term moderate 

pulmonary complications in adjuvant locoregional 3Dradiotherapy 

for breast cancer is clinically signifi cant. Th eir results also suggested 

an association among pulmonary complications, older age and 

incidentally irradiated lung volume. Another recent report suggests 

that utilizing multiple variables including V20 to the ipsilateral lung, 

age and BMI could better estimate the risk of pneumonitis [102]. 

Lymphnode treatment increases the irradiated lung volume and the 

dose to the lung. Several studies have demonstrated an increased 

risk of RP in case of loco-regional (breast/chest wall+lymphnodes) 

radiotherapy compared to brest/chest wall radiotherapy alone 

[104-106]. Several authors and meta-analysis have found a strong 
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association between supraclavicular fi eld irradiation and incidence 

of RP [82]. Th e Internal Mammary Nodes (IMN) irradiation too is 

associated with an increased incidence of RP [78,85]. Another study 

found a strong correlation between using electrons beams for the chest 

wall and symptomatic RP, probably related to the inhomogeneity 

caused by the scattering eff ect of electrons [104]. Chest/Lung Distance 

(CLD), easy to measure at the time of simulation [107], has been 

shown to be predictive of lung toxiticy because of its correlation with 

the irradiated lung volume [108]. Th is paremeter gain impontance 

especially in case of tangential fi elds treatments.

Th e recent publication of the EORTC trial 22922-10925 results 

confi rms that radiotherapy on lymphatic drainage improves the 

risk of lung fi brosis, even if in less than 5% of the population, at a 

median follow-up of 10 years. Only 3% of the 3866 eligible patients 

experienced pulmonary fi brosis (4.4% in the nodal-irradiation group 

vs. 1.7% in the control group, P < 0.001). No signifi cant diff erence was 

observed between the two study groups with respect to performance 

status. Th e author registered an increased risk of pulmonary fi brosis 

at 10 years if compared with 3 year follow-up in both groups (from 

0.9% to 1.7% in the control group and from 2.8% to 4.4% in the nodal-

irradiation group [109].

Th e use of breath holding techniques even for right sided breast 

cancers, if lymphatic drainage radiotherapy is prescribed, lowers the 

risk of pneumonitis and secondary lung cancer (even in smoking 

patients) suggesting to apply breath-hold for locoregional irradiation 

of right-sided breast cancer patients [110].

Several studies concerning mortality from RT-related lung cancer 

showed that the risk is correlated with total dose to the lungs, thus 

recommending a mean dose of 7-18 Gy for the ipsilateral, and a dose 

of 0.1-3 Gy for the contralateral lung [114].

SYSTEMIC TREATMENT RELATED FACTORS

Many studies have shown that concomitant RT and endocrine 

therapy (tamoxifen) could represent a pulmonary fi brosis risk 

factor [111]. In patients receiving adjuvant hormonal manipulation, 

tamoxifen and RT is routinely associated, but should be administered 

with caution in case of potentially radiosensitive patients. Conversely 

concomitant RT and aromatase inhibitors seems to be safe and no 

toxicity was observed in the irradiated lung tissue [112], although 

estrogen deprivation has theoretically a negative eff ect on post-

radiation tissue remodeling. Several chemotherapeutic agents are able 

to induce pulmonary toxicity, independently by RT. Th e concomitant 

administration of paclitaxel and RT signifi cantly increases the risk of 

lung injury due to the radio-sensitizing eff ect of taxanes, and should 

be therefore avoided [113].

PREVENTION 

Th e eff ect of giving a radioprotective agent concomitantly with 

radiation to prevent normal lung tissue toxicity is the object of 

research in several studies. Amifostine, an aminothiol with broad-

spectrum cytoprotection, did not reduce the incidence of RP in a large 

randomised Phase III RTOG study. Neither there was evidence of a 

tumour-protecting eff ect [115]. Pentoxifi lline taken during radiation 

therapy signifi cantly decreased pulmonary toxicity in a small study 

[116].

Incidentally the ACE inhibitor use decreased the risk of RP in 

lung cancer patients receiving thoracic irradiation in a retrospective 

study and in animal models [117].

TREATMENT

Th ere are no controlled, randomised trials on the treatment of 

RP. In case of grade I toxicity patients are mostly asymptomatic with 

only radiographic fi ndings and seldom a dry cough. No treatment 

is recommended. In case of grade II toxicity corticosteroids are 

suggested if patients have more severe complaints. However, mild 

forms of grade II can be treated with inhalation corticosteroids and 

bronchodilators. More severe grade II and grade III toxicities are 

treated with Prednisolone 30-40 mg daily for two weeks followed 

by a slow dose reduction for six to twelve weeks [118]. A relapse 

may occur aft er discontinuation of corticosteroids. A substantial 

reduction in symptoms is normally seen, as well as an improvement 

of the radiological abnormalities. For patients with grade IV RP 

and severe respiratory insuffi  ciency, continuous oxygen or even 

assisted ventilation is required. Some patients with RP are resistant to 

corticosteroids. Th is is due to more than 1.5-times increase of the lung 

epithelium-specifi c protein Krebs von den Lungen-6 (KL-6), which 

is produced by and secreted by type II pneumocytes. It is suggested 

that these patients can be treated with azathioprine or cyclosporine 

A [119]. Th ere is no proven eff ective treatment for radiation-induced 

lung fi brosis. It occurs months to years aft er the end of RT, in response 

to the initial tissue injury, and leads to permanent impairment of 

oxygen transfer [120].

CARDIOVASCULAR TOXICITY 

It is well known that postoperative radiotherapy may have 

adverse eff ects in long-term survivors and an increased mortality 

was observed in long-term survivors since the fi rst meta-analysis by 

Cuzick and colleagues [121]. Th e Scandinavian studies and cancer 

registries identifi ed a high rate of cardiac deaths in patients treated 

with post-operative RT for left  sided breast cancer and underlined 

its role in the increased long-term mortality of this population. 

Interestingly a clear dose-response relationship was defi ned according 

to Scandinavian trials analysis. Th is dose-eff ect relationship has been 

confi rmed by the meta-analysis of the Early Breast Cancer Trialists’ 

Collaborative Group (EBCTCG) in 2005 [122]. Since then, these 

consolidated fi ndings have been consistently taken into account for 

modern radiotherapy treatment planning [123]. 

Th e exact causes of cardiotoxicity aft er radiotherapy in breast 

cancer patients is not clear [124].

Th e potential role of radiotherapy in causing cardiotoxicity 

derives from the evidence that patients, treated with mantle fi eld 

irradiation for Hodgkin lymphoma, experienced pericarditis, as well 

as congestive heart failure, ischemic coronary artery disease, arytmia 

or miocardial infarction [125]. 

Experimental evidence suggests indirect harmful eff ects of 

microvascular and macrovascular damage on the myocytes. It has 

been postulated that radiotherapy leads to an acute infl ammation 

within the heart blood capillaries and to continuous infl ammatory 

processes, resulting in endothelial cell proliferation and formation of 

fi brin thrombi with obstruction of the myocardial capillary lumen. 

A consequently reduction of collateral fl ow and vascular reserve 

causes ischemia and macrovascular injury. Th is phenomena could 

accelerate an age related atheroschlerosis leading to CAD (Coronary 

Artery Disease) [126]. Th erefore, it is quite comprehensible that 

epidemiologic studies detected baseline cardiac risk factors as 

independent risk factor for cardiovascular disease aft er radiotherapy. 

Th ose risk factors are age, hypertension, diabetes mellitus, high 
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total cholesterol levels, family history of early myocardial infarction 

and smoking [127]. Concomitant administration of cardio-toxic 

systemic treatments should be strongly considered when prescribing 

RT. Cardiotoxicity of anthracycline-based chemotherapy regimens 

is well-known and studied; therefore their concomitant use with 

radiotherapy is not recommended. Safety of adding trastuzumab to 

standard adjuvant systemic therapy for Human Epidermal Growth 

Receptor 2 Factor (HER2) positive early breast cancer was largely 

demonstrated [128]. Among patients who received radioherapy, there 

were no signifi cant diff erences across treatment arms in the incidence 

of acute skin reaction, pneumonitis, dyspnea, cough, dysphagia, or 

neutropenia. In particular, the 3-year cumulative incidence of cardiac 

events was 2.7 % with or without radiotherapy. Safety of trastuzumab, 

given concomitantly to radiotherapy in the adjuvant setting, was 

further investigated in large observational serie and no signifi cant 

impact on cardiac toxicity profi le was detected [129,130].

Asian studies have demonstrated, on the contrary, a higher risk 

of acute LVEF dysfunction [131] suggesting that trastuzumab and left  

sided radiotherapy have at least a combined eff ect on cardiac toxicity. 

Th e authors suggest that a LVEF > 50% before the initiation of 

trastuzumab and RT is required. Th e main limitation of this study is 

that LVEF is not sensitive enought to detect early and minor cardiac 

disfunction, so that the actual toxicity might be underestimated [131].

Th e cardiac toxicity of radiotherapy in breast cancer is certainly 

less than the one of several drug therapies. However, up to now, it still 

remains unclear if late eff ects aft er combination of both therapies can 

become manifest in old age with decreasing compensation ability of 

the heart. Finally, this is not a specifi c radiotherapy related toxicity but 

a multifactorial one [132]. Several studies deal with the eff ect of dose 

on specifi c cardiac structures in patients undergoing radiotherapy. 

Lind et al. [133] evaluated post-radiation regional myocardial heart 

perfusion changes with Single-Photon Emission Tomography 

(SPECT) in 69 patients. Th ey correlated the Left  Anterior Descending 

artery (LAD) distribution SPECT changes with the percentage of 

irradiated Left  Ventricle (LV) volume and risk factors for coronary 

artery disease. Th e meta-analysis of Darby et al. [134] confi rms well-

known data on cardiac risks in old studies and has identifi ed a dose-

response relationship. Unfortunately it gives no conclusive answers to 

the most important question of how best to protect the heart against 

radiation toxicity. CAD rate increased linearly with the mean dose 

to the heart, with no apparent threshold. Critical doses and volume 

relationships are not well defi ned, mainly due to wide variation in 

structures delineation [135]. Current recommended mean heart dose 

is around 2-7 Gy for left -sided, and 1.5 Gy for right-sided patients 

[136]. Despite a signifi cant reduction in the mean heart dose has 

been observed in the last decades with the development of more 

sophisticated raditherapy techniques, an increased risk of cardiac 

toxicity has been registered [137].

Due to this reason national and international guidelines highlight 

the sparing of the Organs at Risk (OaR), with peculiar attention to 

the heart. Th e Danish Breast Cancer Cooperative Group suggests to 

administer the prescribed therapeutic dose to the tumor bed sparing 

LAD, heart and lung [138]. Th e authors suggest, in case of standard 

treatments, to respect the following dose constrains: for LAD 

maximum 20 Gy, for heart V20\10 %, and V40\5 %, using standard 

fractionation. 

Hypofractionation for whole breast RT is approved, 

recommended, increasingly used and oft en considered a standard 

treatment schedule [139]. No evidence of a higher incidence of 

adverse cardiac events is reported, and some authors suggest that 

hypofractionated RT might be even safer, in terms of heart sparing, 

than conventional regimens [140]. An innovative fractionation 

schedule (hypofractionation with integrated boost) was tested, and 

doses to organs at risk were routinely determined and documented 

during treatment planning. Interestingly the mean heart dose was 

only 1.48 + 0.9 Gy (n=151) [141]. 

Th e IMN irradiation is associated with an increased dose delivered 

to heart and coronary artery. Th e EORTC 22922-10925 study results 

showed that, aft er 10 years of follow up, 1% of patients had cardiac 

fi brosis (1.2% if lymphnodes RT vs. 0.6%, P = 0.06), and 6% had 

cardiac disease (6.5% if lymphnodes RT vs. 5.6%, p = 0.25) [109].

On the contrary, no increased rate of cardiac disease was observed 

in the nodal-irradiation group of the Canadian trial at a median 

follow up of 10 years [142,143].

Th e Danish Population-Based Cohort Study evaluated 3089 

patients on the eff ect of internal mammary node irradiation in early 

node-positive breast cancer. Th e authors registered equal numbers 

of patients who died of ischemic heart disease in both groups with a 

median follow-up of 8 years [144].

PREVENTION 

Innovative techniques have been tested for avoiding inappropriate 

high doses to heart and LAD. Conventional 3DCRT uses tangential 

beams toavoid high dose region in the Ipsilateral Lung (IL) and 

heart. However, it results in poor conformity, homogeneity and 

hotspots outside the target volume. On the other hand Intensity 

Modulated Radiotherapy (IMRT) and Volumetric Arc radiotherapy 

(VMAT) improve the dose conformity inside the target at the cost 

of an increased low dose spread to Contralateral Lung (CL) and 

Contralateral Breast (CB) which could increase the risk of secondary 

cancer [145,146]. Additional advantages of these techniques is 

their ability to provide diff erential dose distributions, allowing the 

Simultaneous Integrated Boost (SIB) delivery [147,148] Of note 

IMRT plans employ higher Monitor Units (MU) and hence increases 

the delivery time by 3-4 folds compared to VMAT and conventional 

3DCRT. Increase in treatment time, MU, leakage, scatter radiation 

in IMRT has implications on tumor cell repair and repopulation 

[149,150].

Another issue of post-operative radiotherapy is the breast 

motion due to breathing. At present, the Deep Inspiration Breath 

Hold Technique (DIBH) is increasingly used for reducing the target 

motion and primarily for reducing the hearth dose [151-153]. In deep 

inspiration, the heart sinks down and the distance from the chest 

wall increases. First dosimetric studies on single patients showed a 

signifi cant reduction in heart and lung dose using this modality. It has 

to be clarifi ed whether the unique dosimetric advantage is clinically 

relevant or not, as of today there are no prospective studies or data 

demonstrating a possible clinical benefi t of DIBH irradiation on 

the late cardiac toxicity rate for left  breast irradiation. Noteworthy 

preliminary retrospective data on CT based “calcium score” of the 

coronary arteries provided some evidence that radiotherapy of left  

sided breast cancer using breath hold may be associated with less 

calcifi cation [154]. Due to the long interval between radiotherapy 

and the appearance of heart toxicity, we need many years to assess 

the clinical impact of DIBH on cardiac toxicity. Even though the 

best clinical practice is to reduce the heart and LAD dose to as low 
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as reasonably achievable. Data from the major retrospective series 

indicate that an increasing mean cardiac dose was clearly associated 

with a proportional increased rate of major coronary events [155,156]. 

Sardaro et al. reported a 4% increase in the late heart disease risk per 

1 Gy in mean heart dose [156]. Darby et al. have estimated that a 1 Gy 

increase in mean heart dose will result in a 7.4% higher rate of major 

coronary events, defi ned as myocardial infarction and death from 

ischemic heart disease [155]. Obviously, mean heart dose suffi  ciently 

refl ectes coronary artery exposure in patients treated with DIBH in a 

recent analysis [157,158].

A recent study [159] showed a signifi cant reduction in mean 

heart dose of 20% with IMRT and 23% with VMAT. (In this study 

also was seen an additional decrease in heart and LADCA dose by 

IMRT in both FB and DIBH irradiation, compared with VMAT) 

Th erefore, it has been ongoing and continuing institutional policy to 

use the DIBH technique whenever feasible as the standard irradiation 

method for all left -sided breast cancer patients in order to keep the 

heart and LAD dose as low as possible.

Irradiation in prone position is another promising treatment 

option. Several publications are in favor of replacing the supine 

standard position by the prone one for whole-breast irradiation, 

especially in patients with large breasts [160-162]. Recently, Mulliez 

et al. [160] reported a phase III randomized trial in this context, in 

which skin desquamation, dermatitis and edema were signifi cantly 

reduced. Moreover the dose to the ipsilateral lung and the LAD were 

signifi cantly reduced. Comparing the prone and supine treatment 

positions in 400 patients, Formenti et al. [162] evaluated the in fi eld 

volumes of the heart receiving the full dose as a surrogate for normal-

tissue exposure. Th ey described a considerable anatomical variability 

of the volume range, but were also able to show a signifi cantly lower 

mean dose to the heart in the prone position. 

Another way to reduce heart toxicity should be the use of 

Accelerated Partial Breast Irradiation (APBI), which exclusively 

targets only the lumpectomy site plus some margin. Current 

techniques for APBI are Intraoperative Radiotherapy (IORT), multi-

interstitial brachytherapy, intracavitary brachytherapy and external 

beam radiotherapy. Th e available data on APBI suggests acceptable 

local control and survival in selected patients with low-risk breast 

cancer [163].

THYROID TOXICITY

Th e true prevalence of radiotherapy-induced Hypothyroidism 

(HT) in patients who receive radiotherapy is not known because 

Th yroid Function Tests (TFT) are not routinely assessed prior and 

aft er the treatment. Additionally, the radiation dose to the thyroid 

gland is not routinely evaluated because this organ is neglected as 

OaR, especially if only the breast is irradiated [164].

HT is one of the late toxicities of curative RT to the neck region, 

and the reported incidences of HT ranges from 20% to 52% in patients 

treated with radiotherapy for head and neck cancers and Hodgking 

disease [165-168].

Conversely only few studies have performed clinical DVH 

analysis for thyroid dysfunction aft er radiotherapy in breast cancer 

patients and, according to their results, the incidence of HT varies 

from 6% to 21% [169-173].

Th yroid dysfunction develops in nearly 15% of patients, it 

is detectable usually 3 months aft er the end of radiotherapy and 

progressively increases at nearly 6 years from the end of radiotherapy, 

the authors registered the maximum amount of HT in nearly 66% 

of patients [174-177]. Th erefore they considered this toxicity as a 

late side eff ect of radiotherapy.  Th e cumulative incidences [178] of 

HT in patients irradiated in the supraclavicular region at 3, 4, and 5 

years aft er treatment were 10%, 22%, and 40%, respectively, whereas 

the cumulative incidences of HT in patients not irradiated in the 

supraclavicular region at 2, 3, and 5 years aft er RT were 3%, 8%, and 

27%, respectively.

HT can be easily diagnosed with laboratory tests, including serum 

Free Th yroxin (FT4), Free Triiodothyronine (FT3) and Th yrotropin 

(TSH). Clinically evident HT is generally characterized as a reduction 

in serum FT4 concentration with a high serum TSH concentration 

and the existence of clinical symptoms like fatigue/weakness, weight 

gain, cognitive dysfunction, edema, cold intolerance, myalgia/

paresthesia, depression, decreased hearing, constipation, dry skin, 

arthralgia, menorrhagia, and hoarseness. In the subclinical HT, on 

the contrary, the patients have no sympthoms but increased TSH 

concentration while FT4 level could be low or within normal limits. 

Radiotherapy induced hypothyroidism is caused by the damage 

of small thyroid vessels and artheriosclerosis of larger vessels, 

additionally parenchymal injury of thyroid cells and secondary 

capsular fi brosis contribute toimprove toxicity [179].

Th e irradiation dose is a signifi cant factor for the prediction 

of thyroid dysfunction [180-184] but, as previously stated, few 

researchers consider routinely thyroid as OaR and evaluate the Dose 

Volume Hystogram (DVH) of this organ. Kuten et al underlined a 

correlation between the dose to the tyrhoid and HT [185]. Yoden 

et al. [186] too analysed DVHs to evaluate the correlation between 

the percentage volume of the thyroid gland receiving doses and 

the thyroid function. Th ese researchers have suggested that the 

percentage volume of the thyroid gland receiving doses between 10 

and 60 Gy (V10 to V60) would represent a predictor of HT, and the 

percentage volume of the thyroid gland receiving doses V10 to V30 

had a signifi cant impact on the peak level of TSH. Similarly, Cella et 

al. [182] showed that the V30 value was the only predictor for HT. 

Additionally, Akgun et al. [181] reported that V30 was a statistically 

signifi cant predictor for the development of HT. Kim, et al. [183] 

revealed that the thyroid V45 value can predict the development of 

HT and a V45 of 50% can be used as a threshold in RT planning. 

In contrast, Diaz et al. [187] reported no clear correlation between 

Dmean, Dmin, Dmax, V10 to V70 and HT. Th ese data are confi rmed 

by Alterio et al: in their experience too Dmean, Dmin, Dmax, V10, 

V30, V50, and 5 other point doses were not associated with HT [168]. 

In the study by Johansen et al. [173] 15 patients with small thyroid 

volumes experienced a higher risk to develop HT aft er RT, as less 

thyroid tissue receiving doses less than 30 Gy is available for adequate 

thyroxin making; anyway in their study no statistically signifi cant 

intergroup variations were found between V20 and V50. According 

to the study published recently by Kanyilmaz G.et al. [178] HT 

group had smaller thyroid gland volume than those with normally 

functioning glands (13.25 cm3 vs 19.63 cm3, respectively, p = 0.08), but 

the results were not signifi cant. Th ere were no relationships observed 

between Dmin or V10 to V50 and HT, but Dmean and Dmax were 

statistically signifi cant dosimetric predictors for HT.  According to 

multivariate regression analysis, Dmean was the only prognostic 

factor that predicted HT. Th e authors concluded that Dmean > 21 Gy 

was a threshold value for the development of HT.
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Some others risk factors were identifi ed as predictors for thyroid 

disfunction. Radiotherapy volumes are statistically signifi cant 

predictors in the study of Kanyilmaz et al. [178] 84 % of patients 

with HT were in the supraclavicular region irradiated group. Smith 

at al. [171] found no diff erence in the incidence of HT between breast 

cancer patients with more than 4 positive lymphnodes and therefore 

irradiated on the supraclavicular fossa if compared with patients 

treated on the breast/chest wall only.

Age is associated with the development of postradiation HT. 

Radiosensitivity of the thyroid gland is believed to decrease with 

increasing age [171,187] even if in the cohort of Kanyilmaz G, et al. 

[178] age did not have a statistically signifi cant eff ect on HT. 

Chemotherapy impact on HT is not clearly proven. According to 

Jereczek-Fossa, et al.’s review [179], the impact of chemotherapy and 

hormone therapies on the risk of HT was controversial. In Kanyilmaz 

et al. hemotherapy administration was not a statistically signifi cant 

predictor of HT [178]. Hormonotherapy too has no impact on the 

risk of HT. Th is study confi rmed that the extent of surgery and the 

nodal status, related with supraclavicular fossa irradiation, were also 

a statistically signifi can predictor for HT.

Prevention and treatment: Th e practice of nodal radiotherapy 

for early breast cancer is increasing in many centres. Sentinel 

node biopsy is now standard practice and there is a move towards 

considering radiotherapy instead of further surgery for some lymph 

node positive patients. Th is policies derive particularly from the 

results of the EORTC 10891-22023/ AMAROS trial which showed 

very low recurrence rates in the axilla with radiotherapy and surgery 

[188].

Th e EORTC trial 22922/10925 investigated 4004 patients for 

detecting the role of lymphnode irradiationin low-inermediate risk 

breast cancer patients [142]. Th ey report that disease-free, distant 

disease-free survival and breast-cancer mortality were improved and a 

marginal eff ect on overall survival was detected in the group of patients 

irradiated on the regional lymphnode volumes. Th e Canadian MA20 

study reported on 1832 women who were node positive or high-risk 

node negative following conservative breast surgery and either an 

axillary dissection or sentinel-lymph-node biopsy [143]. Th ey report 

that the addition of regional nodal irradiation did not improve overall 

survival but reduced the rate of breast-cancer recurrence.

Both these trials have lead conseguently to an increased rate of 

irradiation of regional lymphnodes in breast cancer patiens. Th e 

technology improvement of radiation therapy surely allows a better 

dosimetric coverage of the lymphnodes PTV with the possibility to 

erogate a lower dose to the OaR.

Th is dose coverage was greatly improved for plans produced with 

modulated techniques, saving in this way as much as possible the 

thyroid gland.

Clinical HT is an irreversible condition, requiring lifelong 

treatment with thyroxin supplementation. Replacement treatment 

reverses all symptoms and signs of HT [180]. However, if replacement 

treatment is not carried out, both clinical and subclinical HT are 

related to worse perception of quality of life.

According to the American Association of Clinical 

Endocrinologists and the American Th yroid Association Guideline 

for HT [189] patients who had clinical or subclinical HT with elevated 

serum TSH concentration above 10 μU/mL were planned to require 

hormon replacement therapy.

BRACHIAL PLEXUS TOXICITY

Neurological symptoms and signs of brachial plexus dysfunction 

may occur as a complication of radiotherapy for the treatment of 

breast carcinoma, but may also result from metastatic spread of 

tumour, unrelated acute brachial neuritis, traumato the plexus during 

surgery or radiation-induced plexus tumours. Th e most common 

causes are Metastatic Brachial Plexopathy (MBP) and Radiation-

Induced Brachial Plexopathy (RBP).

Th e wider indications to adjuvant radiotherapy on regional lymph 

nodes and specifi cally on suvraclavicular fossa highlight the risk of 

improved neurological toxicity caused by the unavoidable irradiation 

of the brachial plexus [142,143]. Th e recent publication of the results 

of the EORTC 22922/19025-MA20 and Danish trials indicates that 

locoregional radiotherapy has an impact on DFS, DMFS andOS, even 

not signifi cative with a median FU of ten years. Th is benefi t is detected 

even in patients with 1-3 positive axillary lymphnodes [190-193].

Th e timing to onset of brachial plexopathy and the fi rst symptom 

of plexus disorder variy widely. Th e average interval rangesbetween 

7.5 months tand 6 years while symptoms may develop decades aft er 

treatmet or with a relatively short latency as indicated by other 

authors [194-198]. Kori et al reported that symptoms from brachial 

plexopathy arose within 4 years from treatment [194], while Fathers 

et al. reported that the median time to onset of symptoms was 1.5 

years [196]. Th e median follow-up time since RT completion was 

over 5.5 years in the report of Leong et al. [199] enough to identify 

arm morbidity, including plexopathy-associated symptoms and 

functional defi cits, if present.

Conversely we will have to consider that several previous studies, 

in which larger doses per fraction was prescribed, demonstrated a 

latency period up to 20 years [195,197,198].

Th e mechanism of plexophaty is believed to be a combination 

of failure of cellular proliferation and localized ischemia. Th e net 

result is fi brosis of the neural and perineural soft  tissues secondary to 

microvascular insuffi  ciency. Th is, in turn, leads to ischemic damage 

to the axons and Schwann cells [200].

Sensory symptoms, such as numbness, paresthesia and 

dysesthesia, swelling and weakness of the arm are the predominant 

clinical evidence of such a damage. Th ese neurologic symptoms can 

be progressive and may lead to a weak and edematous arm.

Most radiation plexopathies are painless, but when present, pain 

symptoms are usually limited to the shoulder and proximal arm. Such 

pain usually is rated as mild to moderate in intensity. Signifi cant pain 

complaints are more commonly associated with recurrent tumor 

than with radiation plexopathy [200].

Th e frequency of radiation-induced brachial plexopathy has 

declined over the past 60 years and depends signifi cantly on both 

the radiation dose and the proximity of the radiation volume to the 

underlying plexus. In the 1950s, the incidence was as high as 66% 

aft er 60-Gy total dose to the axilla and supraclavicular area using 5 

Gy/fraction. Th e current incidence is 1-2% in patients receiving a 

typical dose of less than 55 Gy [201].

Breast carcinoma accounts for 40-75% of reported cases of 

brachial plexophaty, followed by lung carcinoma and lymphoma 

[194-196].

Paresthesia is a fairly common sympton among women treated 

with post-operative radiotherapy for breast cancer in Sweden, with a 

prevalence of approximately 17% [202].
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Lundstedt et al reported 25% of paresthesia aft er RT of 

supraclavicular lymphnodes, 13% in patients without RT [203].

RISK FACTORS

Th e radiation dose, treatment technique, concomitant use of 

chemotherapy, surgical lymph node dissection and underlying 

comorbidities such as diabetes, hypertension, obesity, and vascular 

disease have been demonstrated signifi cant association with the 

development of radiation injury to the brachial plexus [204,205].

Given that breast cancer oft en is treated with radiation therapy, 

women experience a greater incidence and prevalence of radiation-

induced brachial plexopathy than men [206].

Advanced age may be a risk factor for the development of brachial 

plexopathy aft er radiation treatment [207].

It is well known that high doses to the brachial plexus increase 

the risk of neuropathy, as shown by Powell, et al [208], Olsen, et al 

[209] and Johansson, et al [195] in their comparisons of diff erent 

fractionation schedules.

Th e eff ects of nodal RT total dose and dose per fraction on the 

risk of brachial plexopathy have been evaluated in studies conducted 

before the era of CT planning. In a retrospective study of 449 patients 

treated from 1982-1984, Powell et al reported that symptoms of 

brachial plexopathy increased from 1% with 54 Gy in 30 fractions 

(1.8 Gy/fx) to 6% with 45 Gy in 15 fx (3 Gy/fx). (p = 0.09) [208].

Galecki et al. suggested that the rate of radiation induced 

plexophaty increased sharply with doses beyond 55 Gy (delivered at 

2 Gy/fx) [206].

As shown in a recent publication by Leong et al. [199], limiting 

hypofractionation to fraction sizes 2.25 to 2.5 Gy/day with a 

compensatory reduction in total dose may reduce overall treatment 

time, without increasing the risk of shoulder or brachial plexus 

fi brosis. In the UK Standardisation of Breast Radiotherapy (START) 

A and B trials, nodal radiotherapy was prescribed in 14% and 7% of 

subjects respectively [210]. Hypofractionation in the START trials 

was not associated with increased risks of arm symptoms, brachial 

plexopathy or lymphedema [210]. Th e START A trial reported one 

case of brachial plexopathy (0.1%) if a schedule of 41.6 Gy in 13 

fractions (3.2Gy/fx) was used. Th e START B trial reported no case 

of plexopathy among 82 women treated with 40 Gy in 15 fractions 

(2.67 Gy/fx). Th ese fi ndings were confi rmed by a retrospective series 

of 257 patients treated with HFRT 42 Gy in 15 fx (2.8Gy/fx) which 

reported no cases with brachial plexopathy with a median follow-up 

of 6 year [211].

Another randomized trial [212] reinforce these data. In the 

British Columbia post-mastectomy RT (PMRT) randomized trial 

[213], locoregional radiotherapy was delivered over 16 fractions in 

which the mid-axillary dose was 35 Gy, a dose lower than the HF 

nodal RT prescriptions evaluated in the current study. Th e short 

PMRT regimen resulted in a signifi cant reductions in the risk of 

loco-regional recurrence and improvements in 20-year breast cancer 

survival. Although limited by cross-trial comparison, the locoregional 

control and survival outcomes observed in the British Columbia trial 

were consistent with outcomes in the Danish PMRT trial in which 

a conventiona fractionation was used. In a recent study published 

by Nelson Leong, et al. [199], hypofractionation was not associated 

with increased patient reported arm symptoms or functional defi cits 

compared to conventional one.

In the report by Lundstedt, et al. [203] paresthesia in relation 

to dose/volume was evaluated. Paresthesia was reported in 25% of 

patients treated with raditherapy to the supraclavicular lymphnodes, 

with a V40Gy ≥ 13.5cm3, compared with 13% if no radiotherapy was 

prerscribed, RR1.83 (95% CI 1.13-2.95).

A irradiated volume eff ect was suggested by Emami, et al [214] 

when they irradiated the brachial plexus by thirds: radiotherapy on 

one third induced less toxicity probably because one third was a little 

more radio-resistant than all 3 at the same time. Volume eff ects aft er 

irradiation of the brachial plexus has also been suggested by Amini et 

al [215] and Eblan et al [216].

REHABILITATION PROGRAM 

Th erapeutic modalities should focus on reducing pain, 

strengthening, preservation of range of motion and limiting 

lymphedema. Th e interventions and modalities stricly depend on 

the kind of impairments (i.e. weakness, pain, lymphedema, range of 

motion) and are based on occupational therapy and sensorial/motorial 

re-education techniques [217]. Anticonvulsants and antidepressants 

are used to manage severe muscle spasms and provide pain relief in 

neuralgia.

PROGNOSIS

One third of patients experience severe progression of their 

radiation-induced plexopathy, whereas the remainder a gradual one. 

A mild form of reversible radiation plexopathy may present rarely.

PATIENT EDUCATION

Patients should be awared on the expected progressive course of 

radiation plexopathy. A home exercise program should be considered 

to preserve strength and range of motion of shoulder and arm. 

Susceptibility to trauma and infection due to altered sensation, edema 

and fi brotic tissue should be discussed.

RARE TOXICITY AND SECONDARY TUMORS

Th e risk of secondary malignancies has been analysed by 

the Danish Breast Cancer Collaborative Group: 18% of the pre-

menopausal breast cancer patients treated with surgery alone 

developed a second non breast cancer: ovarian, endometrial and 

biliar tract cancer were the most frequent ones [218].

Th e annual risk ratio of radio-induced secondary cancer is 1.2, 

increases with follow up and is strictly correlated with the age at 

radiation treatment [219].

Two SEER studies evidenced no increased risk of secondary 

cancer in breast cancer patients treated with radiotherapy in the 

volumes receiving if < 1Gy, while the risk increased if dose overcame 

1 Gy in organs such as pleura, esophagus, lung, bone, soft  tissue and 

contralateral breast. Only 5% of controlateral tumors and 6% of the 

other cancers could be correlated to the previous radiation treatment 

in a population of 182000 women [220,221].

Th e risk of radio-induced sarcoma is nearly 0.2% at 10 years, 

tipically are induced by high doses and so arise usually inside the 

irradiated volumes. In case of angiosarcoma the interval should be 

lower, between1 and 2.5 years from the end of radiotherapy [222].

Th e risk of controlateral breast cancer depends on several factors 

(hormonal, genetics) while radiotherapy seems to have a role in 

improving the risk only in young women if irradiated on the internal 

breast quadrants [223].
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A slightly improvement of lung cancer has been detected if high 

volume of lung has been irradiatiated especially in smokers patients 

and if high lung volumes have been irradiated [224,225].

CONCLUSIONS

Radiation side eff ects have been extensively analyzed and 

categorized usig international scales (EORTC/RTOG, NCI 

CTCAE). Th e prevention and treatment of the most frequent 

radiotherapy toxicities are nowadays better standardized, due to 

technical improvement and dedicated personnel (phisicians, nurses, 

radiographers). Conversely we lack clear data on the interaction 

between radiotherapy and the other specifi c treatments (i.e. chemo/

hormono/immunotherapy, surgery, reconstructive surgery) and 

their best sequences for reducing toxicity. Moreover, due to recent 

publications, we will have to consider the irradiation of regional 

lymphnodes even in intermediate risk patients. Th is new attitude 

enforce more attention to neglected toxicities, such as the thyroid and 

brachial plexus ones, especially in these long term survival patients. 

Th e patients characteristics have to be taken into account too for 

prescribing a tailored radiotherapy with the lowest collateral eff ects 

and toxicities. 

Technological improvements allow us to obtain more dedicated 

treatments, image guided radiotherapy assures a proper positioning 

of the patients during the treatment and the respiratory gating allows 

a reduced dose to the hearth and the anterior coronary artery. 

We aim that a wider diff usion of these new tools will further 

decrease acute and late radiotherapy toxicity. 
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