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INTRODUCTION
The technology to reprogram adult human terminally 

differentiated somatic cells to a pluripotent stem cell state has opened 
up unprecedented avenues in the realms of disease modeling, high-
throughput screening of novel drug candidates, cell therapy and 
personalized medicine. Induced Pluripotent Stem Cells (IPSCs) are 
obtained through a simple genetic manipulation of adult somatic cells 
by the over-expression of a defined set of transcription factors which 
confer upon them a pluripotent state, similar to Embryonic Stem Cells 
(ESC). Although iPSCs sharemany common features with ES cells, a 
number of research groups have reported that human iPSCs differ 
notably from human ES cells in terms of gene expression, chromatin 
methylation patterns, proliferative capacity, and most significantly 
in the susceptibility of the differentiated progeny to senescence and 
apoptosis [1–5].

The original reprogramming cocktail of Yamanaka and 
Takahashi included the transcriptional regulators, namely OCT3/4, 
SOX2, KLF4, and c-MYC, which were responsible for both induction 
as well as maintenance of the pluripotent stem cell state [6,7]. 
Subsequently it was demonstrated by various other groups that while 
SOX2 and OCT3/4 are essential for reprogramming, KLF-4 and 
c-MYC are dispensable and can be replaced by LIN-28 and NANOG 
without sacrificing the efficiency [8]. Further evidences regarding 
the mechanistic plurality of reprogramming were obtained by the 
employment of a host of small molecules, mostly epigenetic modifiers, 
which could effectively enhance the reprogramming frequency as well 
as fine tune the epigenetic signature to match those of ES cells [9–11]. 
While the quest for the minimally non-invasive (in a genomic way) 
reprogramming cocktail continued, Park and colleagues generated 
panel of patient- and disease-specific iPSCs from individuals with 
monogenic disorders [12]. They provided proof-of-principle vis-à-vis 
the employment of these patient-derived iPSCs for cellular modeling 
by directed differentiation of the iPSCs into various cellular lineages 
of choice and by successfully demonstrating that these cells possess 
the same genetic characteristics of the donors thereby recapitulating 
the disease phenotype. Generating iPSCs as in vitro disease model 
will be useful not only for drug screening but also for elucidating 
mechanisms of disease pathogenesis.

The iPSC technology overcomes two important obstacles 
associated with ES cells: first, ethical concerns surrounding the use 
of human embryos, and second, clinical concern regarding immune 
rejection post-transplantation of ESC-derived cells. The first concern 
is laid to rest by the inherent simplicity of iPSC technology in which 
a range of readily accessible somatic tissue sources like peripheral 

blood cells, skin fibroblasts and keratinocytes are reprogrammed to 
ES-like cells and embryos are not required. The second concern is 
also addressed as iPSCs support the generation of patient-specific 
autologous pluripotent cell-derived progenitors and precursors that 
are expected to match immunophenotypically thereby eliminating 
the risks of immune rejection during transplantation as well as 
offering an unique scope for in vitro disease modeling. Although 
they represent an excellent in vitro source and have provided proof-
of-principle for tissue-regeneration in animal models [13,14] a few 
hurdles remain before the iPSC-derived cells can be adopted for 
widespread clinical application. The transplantation of autologous 
iPSC-derived retinal epithelium targeting macular degeneration has 
been conducted on a seventy-year old woman in Japan in September 
2014 as the world’s first phase I clinical trial with iPSCs. Regardless 
of this clinical trial, US FDA harbours major concerns regarding 
the application of iPSCs in clinical trials. The two main concerns 
involve the reduction of genomic footprint of the reprogramming 
vector in the target cells, and ensuring the transplantation of a pure 
population of target cell progenitors derived from gene-corrected 
autologous iPSCs. While intense research is being pursued to develop 
reprogramming protocols that would allow large-scale production of 
“vector-free” iPSCs, eliminating the risk of developing teratoma from 
even a single pluripotent cell present in a population of differentiated 
cells is a significant challenge [15]. In light of the above, we aim to 
provide a brief overview of the alternate somatic sources for direct 
reprogramming.

Extra-embryonic cells

One of the principal aims in the field of iPSC generation is to 
identify the best cell source to reprogram. Pluripotent stem cells 
have been generated from cells of different somatic tissues such as 
fibroblasts, keratinocytes, blood, stomach and liver cells, neurons 
and hepatocytes [7,16–20]. To obtain adult somatic cells for 
reprogramming, invasive methods are necessary. Furthermore, in the 
case of humans it is difficult to obtain a biopsy from some tissues and, 
when feasible, adult cells are difficult to expand in culture in sufficient 
number, thus limiting the donor cell source for the reprogramming 
process. Additionally, accumulated mutations in adult cells and 
possibilities of insertional mutagenesis due to the use of retroviral 
and lent lentiviral vectors to deliver the transcription factors may 
affect the success rate of reprogramming process [21].

In the last few years, it has been demonstrated that stem cells 
from extra-embryonic tissues, such as placenta, amniotic fluid and 
umbilical cord hold advantages in reprogramming when compared 
with adult cells. Indeed, they possess an intermediate phenotype 
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between embryonic (pluripotent) and adult (multipotent) cells, being 
therefore easier to reprogram. Stem cells from placenta and amniotic 
fluid can be derived at first- and mid-trimester from samples that 
once used for genetic tests are normally discarded or, as also in the 
case of umbilical cord, at the time of delivery. Fetal cells are younger 
and less epigenetically modified than adult cells, hence genetically 
more stable carrying fewer mutations [22–25].

With the goal of clinical application the source of donor tissue 
can be allogenic or autologous. The latter is preferred as it is not 
rejected by the recipient’s immune system and does not require 
a regime of immunosuppressant drugs. However, a limitation is 
the ex vivo expansion capacity of adult cells in adequate numbers 
for transplantation. Furthermore, in the case of particular organs, 
primary cells cannot be expanded in vitro. For all these reasons, 
fetal cells represent a good cell source to largely expand in culture 
and to reprogram, thereby providing an optimal cell source for cell 
replacement therapy.

Amniotic Fluid-derived Cells

Human Amniotic Fluid (AF) obtained in the early second 
trimester of pregnancy contains different cell types and among them 
a population of mesenchymal stem cells. These cells express typical 
mesenchymal surface markers, such as CD90, CD73, CD105 and 
the pluripotency markers OCT-3/4, SOX-2 and SSEA-4. They are 
negative for surface markers commonly expressed by embryonic stem 
cells, such as SSEA-3 and Tra-1-81 and negative for the hematopoietic 
markers CD34 and CD45 [26,27]. In addition, a subpopulation termed 
amniotic fluid stem cells, representing 1% of the total population, can 
be isolated by the selection of cells expressing the stemness marker 
CD117 (c-KIT) [28]. Importantly, these cells possess the capacity to 
give rise to the tissues of the three germ layers. They can be expanded 
in culture for many passages maintaining the length of telomerase and 
a normal karyotype and do not form teratomas when transplanted 
into immunocompromised mice, thereby demonstrating potential 
for regenerative medicine [28].

Work by our groups and by others have demonstrated that 
Amniotic Fluid (AF) cells can be easily and efficiently reprogrammed 
through the ectopic expression of the Yamanaka’s factors [29–32]. The 
generated iPSCs were positive for the pluripotency markers OCT-4, 
SOX2, SSEA-4, NANOG, TRA-1-60, TRA-1-81 and showed a normal 
karyotype. In addition they were able to spontaneously differentiate 
through mesodermal, endodermal, and ectodermal lineages both 
in vitro (embryo bodies formation) and in vivo (teratomas). Fully 
reprogrammed iPSCs could be generated from AF cells within 10 
days of transduction [29] compared to three to four weeks or more 
from adult somatic cells [33]. This is probably due to the multipotent 
state of AF cells that may accelerate the reprogramming course [32]. 
In addition, samples from AF can be easily obtained for genetic tests 
by routine amniocentesis. Moreover, AF cells are transcriptionally 
and epigenetically similar to ES cells and having accumulated less 
mutations than adult cells, may be more easily reprogrammed 
[30,31,34,35].

Of note, iPSCs derived from AF cells represent an ideal source of 
cells for in vitro modeling of congenital diseases. We demonstrated 
that iPSCs derived from AF cells of fetuses with trisomy 21 maintained 
the genetic characteristics of the respective parental cells, hence 
representing a human cellular model for the in-depth study of these 
disease mechanisms [29]. AF cells are autologous to the fetus and 
therefore the generated iPSCs may allow the use of patient-specific 

cell source for regenerative medicine, disease modeling and drug 
screening. Of note, iPSCs could be cryogenically stored to produce a 
cell bank for researchers to access [29].

Interestingly, amniotic fluid cells from the prenatal diagnosis of 
a β-thalassemia patient have been efficiently reprogrammed using 
the STEMCCA lentiviral vector based on Cre/LoxP technology, thus 
offering a new approach for studying β-thalassemia [36] and other 
genetic diseases [37,38]. Liu et al. have demonstrated that CD34+ 
AF cells can be reprogrammed after infection with lentiviral vector 
encoding only OCT4 giving rise to iPSCs that were similar to ES cells 
as confirmed both in vitro and in vivo [39]. Another recent work also 
demonstrated that the OCT4 is sufficient to reprogram human AF 
cells into iPSCs, thus indicating the generation of patient-specific 
iPSCs without the transgenic expression of oncogenes [40]. Notably, 
AF cells have also been reprogrammed by a non-integrating episomal/
EBNA plasmid in chemically defined culture conditions [41]. More 
interesting, c-KIT+ AF cells from both first and second trimester of 
pregnancy could be reprogrammed without genetic manipulations, 
only with the addition of valproic acid in a specific medium in ES 
cell conditions [42,43]. The absence of vectors to reprogram these 
cells may allow the use of safe iPSCs for application in regenerative 
medicine.

Placenta-derived cells

Recently, the placenta has emerged as source of stem cells with 
great potential in regenerative medicine that offer advantages in 
terms of proliferation and plasticity when compared with adult cells 
and permit to overcome the ethical and safety concern inherent in ES 
cells [44]. Placenta is composed of a fetal part (amniotic and chorionic 
structures) and a maternal part (decidua), both characterized by the 
presence of different stem cells. Of relevance, the placenta contains 
a population of broadly multipotent stem cells that also show 
expression of ES cells markers (c-KIT, OCT4, SOX2, SSEA3, SSEA4, 
TRA-1-60 and TRA-1-81). These cells have a mesodermal phenotype, 
but are able to differentiate, under appropriate conditions, not only 
into mesenchymal lineages, but also into hepatocytes, vascular 
endothelial, pancreatic and neuronal cells [45,46]. Mesodermal cells 
may also be responsible, in vivo, for the immunomodulatory function 
of the placenta. Indeed they express low levels of HLA-ABC and no 
HLA-DR, indicating their immune-privileged status, and, therefore, 
MSCs from placenta could successfully engraft in neonatal swine, 
sheep and rats, without rejection [47]. It has been demonstrated 
that human amnion-derived cells (hADCs), obtained from placenta 
after delivery, could be rapidly and efficiently reprogrammed into 
iPSCs by the defined factors: OCT4/SOX2/NANOG [18]. Indeed 
hADCs may be more easily reprogrammed than fibroblast cells due 
to their endogenous expression of KLF4 and c-MYC, indicating their 
potential to be rapidly reprogrammed without oncogene activation. 
Importantly, previous studies have shown that a subpopulation of 
hADCs expressed pluripotency markers, suggesting that hADCs 
might contain pluripotent stem cells, which could be induced to 
differentiate into the cells of the three germ layers [28,48]. Moreover, 
human chorionic villi cells were reprogrammed by transduction of 
retroviruses which express OCT4, SOX2, KLF4 and c-MYC [49].

Easley et al. have shown that Human Amniotic Epithelial Cells 
(HAECs) from placenta can be reprogrammed easily, faster and more 
efficiently than adult and neonatal somatic fibroblasts [50]. Of note, 
through epigenetic studies they found a less hypomethylated status in 
hAECs compared to adult and neonatal fibroblasts. This may partly 
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Table 1: IPSCs derived from fetal sources.

Fetal sources Cell type Method of reprogramming References

Amniotic fluid

c-KIT+ AFcells

AF cells

AF cells

AF cells

CD-34+ AF cells

AF cells

AF cells

c-KIT+ AF cells

Lentiviral vector (OCT4/SOX2/KLF4/C-MYC)

Retroviral vector (OCT4/SOX2/KLF4/CMYC)

Retroviral vector (OCT4/SOX2/KLF4/CMYC  or OCT4 and KLF4)

Lentiviral vector

Lentiviral vector encoding only OCT4

Lentiviral vector encoding only OCT4

oriP/EBNA-1 episomal plasmid

Transgene-free (Valproic acid)

[29]

[30-32,34]

[35]

[36,38]

[39]

[40]

[41]

[42,43]

Placenta

Amnion derived cells

Chorionic villi cells

Amniotic epithelial cells

Amniotic membrane cells

Lentiviral vector (OCT4/SOX2/NANOG)

Retroviral vector (OCT4/SOX2/KLF4/C-MYC)

Lentiviral vector (OCT4/SOX2/KLF4/C-MYC)

Retroviral vector (OCT4/SOX2/KLF4/C-MYC)

[18]

[49]

[50]

[58]

Umbilical cord

CD133+ cord blood cells

Wharton’s jelly MSCs

MSCs

Wharton’s jelly MSCs

Retroviral transduction (OSKM, OSK, OS)

Retroviral vector (OCT4/SOX2/KLF4/C-MYC)

Mini-circle vector containing Lin28, Nanog, Oct4 and Sox2

Sendai virus

[54]

[57,58]

[59]

[60]

Figure 2: Derivation and application of fetal-derived iPSCs in regenerative medicine.

explain why hAECs can be reprogrammed rapidly and more efficiently 
than adult and neonatal fibroblasts. In addition the epithelial origin 
of hAECs may promote a rapidly and efficiently reprogramming 
[16]. Indeed, it was demonstrated through microarray analysis that a 
Mesenchymal to Epithelial Transition (MET) event occurs during the 
first step of the reprogramming procedure [51]. Therefore, by using 
AECs for reprogramming, the initial MET phase could be skipped 
from the classic reprogramming process and then colonies appear 
earlier than neonatal and adult fibroblast [50].

In addition, placentas are usually discarded after delivery and 
their use do not imply ethical concern. Moreover, the procedure 
for isolating hADCs from placenta is relatively easy, fast, and safe. 
Another great advantage for the reprogramming process is the large 
quantity of hADCs available from placenta. Therefore, the generation 
of iPSCs from hADCs could allow the generation of a bank with the 
aim of autologous cell-replacement therapy in the later life of the cell 
donors. For all the reason listed above, placenta cells represent an 
ideal cell source that can be efficiently reprogrammed.

Umbilical cord-derived cells

The umbilical cord, a tissue that is traditionally discarded upon 
birth, contains a source of stem cells that can be collected rapidly, 
efficiently, and non-invasively from newborns at the time of delivery. 
Stem cells of umbilical cord can be isolated from cord blood and 
Wharton’s jelly, the connective tissue surrounding the vessels of 
umbilical cord [52]. These cells possess the advantage to carry less 

mutations when compared with adult donor cells.

Umbilical cord blood is a rich  source  of hematopoietic stem 
cells currently used in cell therapy transplantation with lower 
immunological reactivity and lower risk of graft-versus-host disease 
compare to those derived from adult bone marrow [53]. CD33+ 
hematopoietic stem cells from cord blood have been efficiently 
reprogrammed in two weeks time by retroviral transduction with 
OCT-4 and SOX2 only. Keratinocytes or fibroblasts were not able 
to generate iPSCs using the two factors only [54]. A population of 
MSCs is present in the cord blood but with low frequency and not in 
every samples collected [55]. Otherwise, MSCs from the Wharton’s 
jelly can be isolated in large number and are able to differentiate 
into adipogenic, osteogenic, myogenic, and chondrogenic lineages 
[56]. Moreover, Wharton’s jelly MSCs can also be induced to 
differentiate into dopaminergic neurons [57]. Pluripotent stem cells 
can be generated from MSCs of Wharton jelly by means of retroviral 
vector encoding the 4 Yamanaka factors on Matrigel without feeders 
[58]. The generated iPSCs showed the morphology of human ESCs, 
a normal karyotype, and were positive for ESCs markers including 
NANOG, REX1, OCT4, TRA-1–60, TRA-1–80, SSEA-3, and SSEA-4. 
In addition, iPSCs from MSCs of umbilical cord have been generated 
in a feeder layer-free process using a mini-circle vector containing 
the reprogramming genes Lin28, Nanog, Oct4 and Sox2 [59]. More 
recently iPSCs from MSCs of Wharton’s jelly have been generated 
using genome non-integrating Sendai virus [60].
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CONCLUSION
The possibility of reprogramming adult somatic cells from 

patients affected with genetic disorders into a virtually inexhaustible 
reserve of pluripotent stem cells promises a deeper understanding 
of the malfunctioning of our genes and the cells types affected by 
the gene mutations. However, the various protocols employed for 
reprogramming adult somatic cells suffer from several technical 
roadblocks vis-à-vis low efficiency, extended duration and being 
labor intensive. Alternatively, cells derived from fetal sources 
(amniotic fluid, placenta and umbilical cord) present to us an equally 
viable source of reprogramming. As stated above, the fetal derived 
cells hold several advantages over the adult sources especially in 
terms of being less prone to aging dependent genetic and epigenetic 
modifications. It has also been demonstrated that due to their closer 
proximity to the pluripotent stem cells state, they are amenable to 
reprogramming within a shorter duration. The advent of targeted 
genome-editing tools like the CRISPR/Cas9 system is expected to 
increase the development of in vitro models for investigations into 
the etiology of rare genetic disorders, toxicological screening of drug 
candidates, as well as for gene corrected autologous cell replacement 
therapy. It can be envisaged that reprogrammed fetal derived cells 
would play a significant role in this context of pre-clinical screening 
and disease modeling.
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