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INTRODUCTION
Plant stem cells are meristem cells with different division 

capabilities and differentiation degrees. Under different environmental 
conditions (different hormones), plant stem cells divide and further 
differentiate into various tissues and organs or form a new plant [1]. 
Therefore, plant stem cells not only have division and differentiation 
capabilities but also are the origin of tissues, organs, and new plants.

Distributions of plant stem cells

Plant stem cells distribute in several places of the plant body, such 
as in the apical meristem that is located in the tips of organs (roots 
and shoots), and can be divided into two types according to their 
origin [2]. The protomeristem is located on most tips of roots and 
shoots. The primary meristem with minimal differentiation degree 
came from the division of protomeristem and is located close to the 
protomeristem. The primary meristem can divide and differentiate 
into various plant tissues, including epidermis, basic tissue, and 
vascular tissue, which form the root, stem leaf, and flower [3,4].

After initial development, the plant still has many remaining 
undifferentiated, less differentiated, or not fully differentiated 
meristems (various types of stem cells), which play an important role 
in the subsequent growth of the plant. The lateral meristem is an organ 
existing in the lateral side of the plant organs and is located between 
the phloem and xylem or near the surface layer of the root and stem. 
After the complete development of primary plant parts (root, stem, 
and leaf), these retained stem cells further divide and differentiate 
for secondary plant growth and thicken the plant, especially some 
woody plants [5]. Intercalary meristem exists among mature tissues 
in some plants. Intercalary meristem differentiates into mature tissue 
but is silently preserved. In a certain development period or certain 
environmental conditions, such meristem can be further divided and 
differentiated for plant development, such as the case for bamboo 
and leek [6]. Meristem (stem cells) retained in the primary plant 
body (pericycle cells of root, procambium between the phloem and 
xylem in root, and stem of the primary plant) is the foundation of the 
subsequent growth of plants.

Parenchyma is the largest tissue in plant, which consists of various 
cells with thin cell walls, large vacuoles, and specific physiological 
functions, such as cortex, pith, and mesophyll [7]. Parenchyma cells 
also have division potential. Under special stimulation (hormone or 
be taken off the cell wall) of wound or in culture, they will return 
to their original state and dedifferentiate to form a callus that can 
further form a new plant [8]. The first initiated cell is typically 
the less differentiated stem cell retained, which will induce the 
dedifferentiation of adjacent parenchyma during tissue culture [9]. 
However, the parenchyma, with its dividing potency in plant, only 

displays its dividing function in a special environment. In addition, 
the parenchyma is a stem-like cell that is different from stem cells 
with no or less differentiated state in plant [10]. Some stem cells at the 
root tip of Arabidopsis thaliana, which are significant for the origin of 
root tissues, are shown in (Figure 1).

Function of plant stem cells

The activity of plant stem cell is inseparable with the way the plant 
grows and develops and is gradually formed in long-term evolution. 
Apart from apical, lateral, and intercalary growth, the branch-
growing pattern is also established by the activities of plant stem cell 
[11]. Plants employ sexual reproduction to adapt to the changes in 
environmental conditions [12]. Aside from this, plants also employ 
asexual reproduction to sustain their stable genetic features. Higher 
plants use many types of asexual reproduction in their long-term 
evolution; asexual reproduction replaces or coexists with sexual 
reproduction. Specifically, plants breed differently compared with 
higher animals. This development results in the generation of 
numerous stem cells in vivo that have capability or potential for cell 
division (parenchyma). Under certain conditions, these retained cells 
can be further divided into a new plant (asexual reproduction) [13]. 
Asexual reproduction can hence exist in higher plants. In animals, 
some cancers from stem cells are similar to the rudiment of asexual 
reproduction in plants [14]. Many stem cells distribute in definite 
places in plants and initiate at different periods to maintain tip 
growth, lateral growth, intercalary growth, and asexual reproduction. 
The growth manner of higher plants provides sufficient production 
as food for animals and may also be the reason for pluripotency in 
higher plants.

Plant stem cells in asexual reproduction

The nature of asexual reproduction is to keep the characteristics 
of species in a relatively stable environment. Asexual reproduction is 
formed in long-term evolution and is another way of reproduction 
aside from sexual reproduction [15]. Several plants, such as potato, 
sweet potato, bamboo, and lotus, have multiple ways of reproducing 
asexually. Three species of Crassulaceae, Kalanchoe daigremontiana, 
Graptopetalum paraguayense, and Crassula portulacea are 
investigated to determine the different types of asexual reproduction 
owing to the different types of stem cells retained in plants [16].

K. daigremontiana asexually reproduce by producing viviparity 
seedlings [17]. Some initiation cells are located in the nicks of mature 
leaf edges and can divide and differentiate into viviparity seedlings 
(Figure 2) [16,18]. The young plants of the other two species came 
from a leaf wound. However, the young plants of G. paraguayense are 
only produced from the leaf basis (Figure 3A-D), where several layers 
of meristem cells are located; the adventitious buds of C. portulacea 
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Figure 1: Some stem cells at the root tip of Arabidopsis thaliana.
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Figure 2: Development of plantlets of Kalanchoe daigremontiana [16].
A. A small leaf with newly formed jagged marginsx.
B. Higher magnification of stem cells with obvious nuclei on the newly formed jagged margin.
C. Two leaf primordia appeared from the jagged margin.
D. Plantlets located on the jagged margins of the leaf.

are produced by the activities of remained meristems (procambium) 
in the vascular bundle at any leaf wound (Figure 3E-I). The retained 
meristem (stem cells) can thus serve as the foundation of plant asexual 
reproduction [16,19]. 

Activity of plant stem cells and hormones

The growth, development, blossoming, and fruit bearing of 
plants are associated with hormones [20]. The hormones stimulate 
the remaining stem cells to divide and induce the adjacent potential 
parenchyma cells to form callus [21]. Callus formation is closely 
related to the number of stem cells of explants and hormone 
proportions. The Callus-Inducing Medium (CIM) has a auxin to 
phytokinkin ratio of 8:1 [22], and different hormone ratios are needed 
for culturing different plants and explants. The petiole of Arabidopsis 
with different hormone ratios is investigated, and auxin is found to 
be responsible for inducing the stem cells and the dedifferentiation 
of parenchyma cells, whereas the phytokinin accelerates such cell 
division [23,24].

Hormone ratio is critical, and some genes respond to specific 
hormones. The cells in almost tranquil state will be stimulated 
and enter into cell cycles [25]. The interaction between the auxin 
and cytokinin in root during embryogenesis and the expression of 
hormone-responsible genes has been proven [26]. The hormone levels 
and the interaction among them on some specific gene promoters 
result in expression change and eventually facilitate callus formation 
[27].

Activity of plant stem cells and relative genes

Different genes regulate various physiological activities [28]. 
Dedifferentiation is a complex process related to the expression and 
regulation of specific genes [10]. A few studies have focused on the 
relationships among genes and their dedifferentiation [29]; however, 
the corresponding mechanism remains unclear.

The previous results from my lab colleagues show that the 
remaining stem cells in vascular bundles divide first, and then callus 
is formed after petiole explants culturing for 24 h to 36 h [9,24]. 
In a recent study, Affymetrix Gene Chips are used to screen some 
related genes [30]. The glutathione S transferase induced by hormone 
is highly expressed in the dedifferentiation process of petiole 
culturing [30]. WUSCHEL and no-apical-meristem gene family are 
also highly expressed in the petiole dedifferentiation process [30]. 
Many members of the Lateral organ Boundary-Domain (LBD) gene 
family are involved in the dedifferentiation process [30], and the 
LBD contains genes found in rice ADVENTITIOUS ROOTLESS1. 
LBD participates in hormonal regulation and combines the other 
proteins in pericycle cell dedifferentiation, which adjust the starting 
cell differentiation [31]. Although the types and proportions of stem 
cells in various explants are different, most of the explants produce 
similar tissues named calluses; from them, embryogenic calluses 
(embryoid body predecessor) further differentiate to form young 
plants. Gene expressions in various stem cells and cell differentiation 
vary, but their final development is consistent (callus formation and 
regeneration seedlings) when explants are placed under a special 
hormone environment (CIM). Different types of stem cells with 
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Figure 3: Development of plantlets of G. paraguayense (A-D) and C. portulacea. (E-I) [16].
A. G. paraguayense has fleshy leaves and lacks obvious branches. 
B. Plantlets initiated at the bases of leaves. 
C. Sections of fresh leaves showing several layers of stem cells at the bases of leaf stalks.
D. Ultra structures of the stem cells at the bases of fresh leaves.
E. C. portulacea with fleshy leaves.
F. Plantlets (arrow) initiated at wounds after leaves were detached from the plant for 20 days. 
G. Cross section of fresh leaves showing numerous small cells (procambia). 
H. Cells of procambia showed signs of cell division after leaves were detached from the plant for 6 days. 
I. Ultra structures of a stem cell in procambia of fresh leaves. 

Figure 4: Seedlings growth in MS (A) and in CIM (B).

various differentiation degrees and the expression of their genes are 
inhibited by stress genes in explants dedifferentiation, thus leading 
to callus formation. The nature of stem cell differentiation is decided 
by heredity background and differentiation state [32]. If the cells 
will become less differentiated or become undifferentiated under 
the dedifferentiation process, then their differentiation-related genes 
must be inhibited. Stress genes therefore play an important role in the 
dedifferentiation process.

The seeds of A. thaliana have a strong differentiated capability to 
form seedlings when the seeds are cultured on Murashige and Skoog 
(MS) medium. By contrast, differentiated genes are inhibited by the 
up-regulation of stress genes when the seeds are cultured in CIM. The 
seedlings also have smaller sizes and grow slower than those on the 
MS and form cup-like leaves (Figure 4). 

Different genes are involved in the different physical and 
developmental processes of different plants or explants, including 
dedifferentiation and pluripotency; they include the genes of 
hormone response, stress, stem cell maintenance, differentiation, and 

dedifferentiation; for instance, LBD29 and ARF17 are up-regulated 
dramatically in dedifferentiation, and WUSCHEL and BBM are 
involved in differentiation [33-35].

WIND 1 in Arabidopsis has recently been reported to be a gene 
of dedifferentiation activity in the induced pathway of wounding 
[36], and a similar homologous gene (WIND 1-like) is also found in 
Tellungiella halophila [37]. Many genes regulate one phenomenon 
by different pathways, and they coordinate with one another. Gene 
expression balance can decide the direction of specific differentiation 
and even the cell fate. The balance facilitates the realization of plant 
growth, development, asexual reproduction, and pluripotency. 
Such facilitation is named “seesaw model” theory, in which the 
reprogramming of animal cells is affected by the interactions among 
the genes and their balan cing [38].

CONCLUSION
Nearly all types of plant growth include primary growth and 

secondary growth, and sexual and asexual growth originates from the 
activities of plant stem cell. The success of culturing for plant cells 
and tissues in vitro is a result of the callus formed from the retained 
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stem cell and stem-like cell, such as parenchyma. Higher plants with 
tips of root and shoot develop via branch growth. Some perennial 
plants with periodic growth always keep a certain amount of 
original stem cells (including undifferentiated and less differentiated 
protomeristem, primary meristem, and secondary meristem). The 
presence of these primitive cells and parenchyma is the basis of plant 
growth, development, sexual or asexual reproduction, and tissue 
culture. Primitive cells and parenchyma are necessary for plant stem 
cell activities in various physiological functions, even if they are 
retained for the next development, which is determined by the status 
of plant as the first producer in the biological kingdom. 

The stem cells of plant and explants under hormone environment 
differentiate to the callus direction and can be further differentiated 
to form into a new plant. Whether in vivo and in vitro, the direction 
of cell differentiation can be influenced by genetic background and 
environmental hormone. Such a process is complex for plant stem 
cells activated by hormone signal transduction by considerable gene 
expression and regulation, eventually resulting in a new plant. A 
few plants or species are difficult to subject to culturing (to produce 
less callus or no callus and directly from seedlings). For example, 
the Chinese orchid, with its protocorm and regeneration seedling 
produced by the culture of shoot tip, is the elongation of asexual 
reproductive organs (subterraneous root) [39]. 

To sum up, the activities of plant stem cells determine the growth 
and development of plants, and the retaining plant stem cells in vivo 
result in different ways of plant growth and reproduction in different 
plants. The number, state, hormonal environment, position, and 
relative gene expression of plant stem cells and the large amount of 
parenchyma in plant are the key to plant pluripotency.
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