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BACKGROUND

Th e climatic variability, as primary expression of the climate 

change, is the most signifi cant environmental problem that humanity 

will face in the next years [1]. It is currently one of the major 

challenges to the international scientifi c community, which could 

be already infl uencing in the human health, mainly in pathogenic 

microbes as the Respiratory Syncytial Virus (RSV), an important 

cause of Acute Respiratory Infections (ARI), mostly in developing 

countries. Children under fi ve are the most aff ected by severe 

epidemics of ARI, with extensive damage and even dead in some 

cases [2,3]. Because of the burden of ARI to the health system, the 

Ministry of Public Health of Cuba implemented in 2000 an Integral 

Program for Care and Control of the ARI, establishing the strategy 

for facing those infections [4]. It was updated in 2013 [5]. Several 

studies in diff erent regions of the world have analyzed the association 

between RSV activity and various climatic elements: atmospheric 

pressure, relative humidity, temperature, rainfall, wind speed and 

direction, UV radiation, and point of dew [6,7]. In countries with 

tropical climate, the studies are limited and virus activity has been 

associated with the rainy season [7]. In Cuba, RSV presents a well-

defi ned seasonal pattern in the rainy period (May-October) with 

peaks in September-October, the months with the higher humidity, 

rainfall and contrasts regarding its thermal regimen. Besides, the level 

of spatial association of those indicators was determined [1]. In the 

above mentioned paper [1], nonlinear and heterogeneous structure of 

the virus activity behavior was identifi ed, in which a spatial structure 

and high heterogeneity predominated, as well as the infl uence of the 

climatic variability described according to the Bulto Indexes [8-11]

on the seasonal pattern and the spatial distribution of RSV [1], with a 

cumulative eff ect. Based on those fi ndings, the present study propose 

two models which allow simulate the behavior of spatial distribution 

and temporal variation of the RSV activity associated to the climatic 

variation as indicators that let to predict the future behavior of the 

virus.

MATERIALS AND METHODS

Study Design

A prospective study of nonlinear time series combined with 

spatial statistic was performed.

Setting

 Cuba is a mostly tropical country settled in the Caribbean Sea, 

with a rainy season in summer (Aw, according to Koppen climate 

classifi cation). Th e average annual temperature ranges from 24°C 

till 26°C and higher in the lowlands and on the eastern coast, with 

temperatures lower than 20°C in the highest parts of mountains. 

Despite its tropical condition, some seasonal characteristics are 

present in its thermal regime, with two well-known seasons: summer 

(rainy season) from May to October, being July and August the 

warmest months; and winter (less rainy season) from November to 

April, being January and February the coldest months. Th e national 

average rain record is 1335 mm; however, drought events recurrently 

occur, the duration of which can persist for several years [12].  

Participants 

A total of 11462 clinical samples of children under fi ve years 

old with clinical diagnosis of infl uenza-like illness, severe acute 

respiratory infection, bronchiolitis and pertussis syndrome were 

included in the study. 

Variables

Clinical: Th e total of samples processed in the National Reference 

Laboratory (NRL) and the positive samples of RSV diagnosed for 

both RSV type A and B, by provinces and month. RSV cases were 

considered those with symptoms of ARI and a respiratory sample 

positive to RSV.

Climate: Monthly series of dissolved oxygen density in air (g / 

m2), maximum and minimum mean air temperatures (ºC), average 

thermal air oscillation, average relative humidity of air (%), (Mm), 
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mean atmospheric pressure at sea level (hpa), total precipitation 

(mm) and the number of days with precipitation 0.1 mm.

Data source and measurements

Th e clinical samples were obtained in the pediatric sentinel 

hospitals and ambulatory services from all provinces, with a high 

quality of data obtained by the microbiological sample data collection 

and transport established in the National Prevention and Control 

Program of ARI. Samples were sent to the NRL of the Institute of 

Tropical Medicine “Pedro Kouri”, for diagnosis and surveillance 

of ARI with possible viral etiology, between January / 2010 and 

December / 2015. For RSV detectiona Real-Time Polymerase Chain 

Reaction assay (RT-RCP). Th e effi  cient limit of detection for RSV 

A and B is 10 and 15 genomics copies, respectively. Moreover, the 

sensitivity and specifi city of the multiplex RT-PCR assays for RSV are 

100% and 99, 1% was used [13]. As a sentinel surveillance is used in 

the country for detecting viral circulation, less than 5% of ARI cases 

are tested, mainly those with Severe Acute Respiratory Infections 

hospitalized in Intensive Care Units, which allow to know the virus 

pattern circulation across the territory. Th e data of the climatic 

variables were obtained from the climate station network of the 

Meteorology Institute in the period 1981-2010 for the baseline and 

2010-2015 for the current conditions. 

Statistical methods

2.6.1. Models of temporal processes: To modeling the eff ects 

of climate variability on the patterns of RSV behavior the following 

dynamic model is proposed [14]:
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Where,

V (B): Are the weight of the climatic signals on the virus.ɷ:   Is thepolynomialin B.

B:   Is theparameter representing the diff erences between the 

entrance variables. 

X
t
: Is the vector containing the values series of the climatic indexes 

that simulate the climatic variability.

Y
t
: Is the vector containing the virus behavior to which the eff ect 

of climatic variability is determined.

Th e models of formula (1) in the literature are named as 

autoregressive models with distributed lag (ARDL - Autoregressive 

Distributed Lag Model) [15].

To model the nonlinear part, we will assume that variance 

changes in time t, which is described in the following expression [16].
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Th en we have a model with no constant variance.

Th e expression (2) can be modifi ed by an exogenous term, if we 

assume that variance is modulated by an external factor. Th en, the 

previous expression transforms in [8-11].
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Th ese models are the named ARMAX [17,18] if the variance 

is constant; otherwise, it will be an Autoregressive Model with 

Non Constant Variance (ARCH-Autoregressive Conditionally 

Heteroscedastic) with exogenous variable [18]. Th e inclusion of the 

BI
r,t,c 

in the equation 3 constitutes an adaptation to the models of the 

pollutants impact on metalsstudy [19], now transferred to the studies 

of impact on health in which the variance change is also incorporated. 

Models of spatial processes: Dependence modeling has been a 

much more studied topic tans other eff ects of spatial heterogeneity 

[20], although other authors had already verifi ed the existence of 

geographical continuity in many phenomena. [21] On the other 

hand, the study of spatial analysis as an eff ective technique to know 

the causes and forms of epidemics and diseases propagation has also 

been presented [22]. Th is spatial eff ect has been studied in other 

knowledge fi elds such as the natural resources and environmental 

[23,24] and the studies on social problems [25,26] in research and 

development activity (R+D) [23,27]. Models of spatial dependency, 

also denominated dynamic spatial models, could be defi ned as those 

of lineal regression models that consider explicitly the existence of 

the spatial eff ects of dependency or autocorrelation. Th e presence 

of spatial autocorrelation in a model, limits the traditional use of 

Ordinary Minimal Square Method (MCO). Th at’s why it is necessary 

to perform the estimations by the Maximum Likelihood (ML) 

method, which has been shown as one of the most used alternatives. 

At the same time, the analysis of the spatial dependency allows to 

identify phenomena as externality or overfl ow eff ects in a certain 

spatial unit [28].

General model of spatial weight: For simulation, the start point 

is that spatial distribution of virusesis characterized by a strong 

spatial correlation [1], then the spatial autoregressive model can be 

used [23,28-30].
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where, y is the vector (nX1) of dependent variable observations, 

ρ (ro) is the autoregressive coeffi  cient, Wy is the vector of the 

independent variables weightedby the W matrix of neighbor 

observations, β is a vector of 1kx dimensions of the parameters 

associated with exogenous variables (it means, without the spatial 

lag) in the X matrix of dimensions  nxk  (that describe thebehavior 

of the climate variations given the BIs), λ is the coeffi  cient of the 

spatial autoregressive structure for the μ error and ε is the sample 

error. Th e matrix of spatial weights W was calculated using spatial 

weights by distance (with 20 km threshold), obtaining a bigger spatial 

autocorrelation. Infl uence of virus circulation on the bordering 

areas will depend more from the distance between them than 

from the areas form and size [30-32]. Selection at the spatial lag or 

spatial error for each model was based on the Moran’s I value and 

the Lagrange Multiplier [33], calculated using the pattern fi tness 

residuals according to ordinary least squares. Th e statistical soft ware, 

GS-plus 10.0, GeoDa 1.10.08 and SIG, ArcGIS 10.1 were used for the 

processing and the generation of the diff erent maps at Temporal-

Spatialscale.
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Prediction of the RSV circulation in Cuba: Even prediction of 

the epidemic behavior or virus activity in time and start point are 

necessary, it is also important to know the spatial virus distribution; it 

means, the areas of higher risk and how it disseminates to the rest of 

the country. To that, the model proposed in the previous epigraphwas 

used, and during May 2016 the prediction of RSV circulation in the 

country began to be used. A map format has been used, which allows 

predicting the virus circulation in a friendly and very clear way to 

decision makers.  Somehow, it indicates the more dangerous areas 

with conditions for the appearance of an ARI epidemic attributable 

to RSV. Th at result gives answer to the necessities of the early warn 

systems for health [34]. 

Measures to quantify the quality of the adjusted models: 

Currently, there is not any evaluation protocol with specifi c 

indicators to this kind of model. So, to validatethe use of simple 

statistic indicators is preferred. As the Absolute Mean Error (AME), 

theMean Quadratic Error (MCE) and the bias combined with the 

concordance index D
i 
and the Skill Factor [33-37], will be used to 

measure the precision of simulation and the outputs of prediction. 

It is understood as precision the level of concordance between a pair 

of individualsof the predicted values and the observed values in RSV 

series. We will describe the equations of the two last ones because 

they are less used.

Concordance index D
i
, given the next equation

                (5)

where:  0  ≤  D
i 
≤ 1; P: predicted value; O: observed value; and

Ō: mean of the observed values.

If D
i
≈ 0, indicates a bad concordance between predicted and 

observed values

If D
i
≈ 1, indicates a good concordance between predicted and 

observed values

Th is indexis preferred to correlation r coeffi  cient and the r2 

determination, since those frequently show deceiving and unreal 

magnitudes [38].

Th e Skill Factor was also used, which is given by the following 

expression

           (6)

Where, I =1, 2, . . . , n,  P
obs

, are the real observation and P
est 

are 

estimated by the prediction  model  and Var is the variance [39] and 

its interpretation is similar to the previous index.

RESULTS

Temporal scale

In table 1 the RSV parameter estimations are shown. Both models 

AR (1)-ARCH (1), with exogenous variable (descriptor indexes of 

climate variations) are combined. All parameters are signifi cant, 
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with high feasibility and quality obtained by the model to predict the 

RSV behavior to temporal scale. According to the values of diff erent 

quality indicators, the model is adequate to simulate and predict the 

RSV circulation in the country from climatic conditions (Figure 1 and 

Table 2).  Figure 1 shows the concordance level between predicted 

and real values.

Prediction models to spatial scale

All variables are signifi cant (Table 3) and, as there are not 

reasons to reject the hypothesis of no spatial autocorrelation of 

errors, the model results are well specifi ed. Besides, determination 

coeffi  cient remains below 60%. All their parameters were signifi cant 

to a confi dence level of 95% and 99%. In fi gure 2, the expected spatial 

distribution regarding RSV activity in the country is shown., A low 

circulation in that month is in general observed; although the virus 

remains circulating in the whole country but not in a same way.

Table 1: AR (p) x ARCH (q) model to simulate and predict RSV from climatic 
conditions according to BI 1,t,C and  BI 2,t,C

Variables in the 
model Coeffi cients Standar 

Error
Statistic

Z Pr(>|Z|)

C1 1.4188 1.6022 2.8860 0.0076*

IB 1,t,predict 4.462 1.1060 4.0346 0.0001**

IB 2,t, predict 0.759 0.6201 1.2221 0.0217*

AR(1) 0.299 0.0511 5.8402 0.0000**

SAR(12) 0.599 0.0569 10.535 0.0000**

Variance Equation

C2 15.442 7.6170 2.0270 0.0430*

ARCH(1) 5.543 1.4310 3.8734 0.0001**

*p < 0.01    ** p < 0.001    Model Ability: 0.89012, Quadratic Mean Error: 7 
cases.s

Figure 1: Real and predicted Respiratory Syncytial Virus activity using the 
information of positive samples obtained from the laboratory reports.

Table 2: Quality of the RSV predictions with independent sample. January 2014 
to December 2016.

Indicator Skill factor 
value (βi)

Concordance 
index value (Di)

MQE AME BIAS

RSV-Real/ 
RSV-Predicted 0.8902 0.9021 7.23 7.33 3.94

MQE: Mean Quadratic Error; AME: Absolute Mean Error.
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DISCUSSION

Temporal scale

With this model, it is possible to follow the future evolution of the 

epidemiological patterns in the study region, even with three months 

in advance, since the variables describing the climatic anomalies 

present a lag eff ect or feedback on the pattern of the virus behavior 

from one to three months [1]. So, climatic situations characterizing 

RSV variability and change don’t show up in the moment t0, but 

in the moment t
1
, t

2
 and t

3. 
It means, the climate has a cumulative 

eff ect on the virus aft er the climatic anomaly or up to three months 

later. Th e results reached with this model, let emitting predictions 

with eff ectiveness higher than 80% and with very low errors that 

can be assumed as they are within the boundary sampling error. 

Th is result corroborates the stated by other authors [7,18], who 

have identifi ed elements of climate (temperature, humidity, cloudy, 

among other) infl uencing in the virus behavior and they have tried 

to formulate models from those elements. Th e present study diff ers 

of those mentionedabove in the way of approaching the climate, 

because it is not approached by means of isolated elements, but 

is described with complex indexes [8]. Th e ARMAX models[18] 

present two limitations: the climate is not approached in a complex 

way, but with some elements included; besides, the models present 

a very strong assumption, when assuming that the information to 

use should have constant mean and variance. It means absence of 

Heteroscedasticity, a very typical characteristic of the viruses, which 

present a marked variability and change in the mean. Th ose aspects 

are very well solved in the mentioned research when they transform 

the information applying fi nite diff erences to stabilize the mean and 

variance, as well as to eliminate the outbreaks or picks, using the 

ARIMAX or other model [40]. In our proposal, this limitation is 

overcome considering autoregressive non-linear models with change 

in variance in an explicit way. Th is provides a bigger robustness to 

the results when simulating the viruses circulation and variation as 

are described in the historical records. Th at allows us to predict the 

picks and volatility changes in time; something for which ARIMAX 

model has not been conceived. Another limitation overcame in this 

research, is the way in which the infl uence of the climate on the 

seasonal pattern of the virus is simulated. Th is is approachedsince the 

complexity, using indexes that describe the climatic variations that 

can alter the virus behavior and circulation, since perceives all the 

changes of the climatic variables and not each variable separately. In 

this way, the mechanism of viruses behavior and their association 

with climate is well understood, because when we are in presence of 

high humidity and temperatures, this is in general an answer of the 

variable to a characteristic climatic situation that in general obeys 

to the presence of a low pressure system, bearing to conversion 

processes (rainy event). On the other hand, those climatic conditions 

aff ect the blood circulation, heart rhythm and breathing in the 

human body, because the heat exchange is intimately linked to the 

metabolic process, which is regulated by the nervous system. Th en, 

the climatic conditions can favor or not the virus incubation; while in 

other occasions the organism could become more resistant, favoring 

or not the condensation and acidifi cation processes in the airways 

[41]. It was possible to simulatethe behavior of the virus circulation 

by months and to understand what happens in the months July-

August, which is the period when the human being in the study 

region receives the major eff ect of the climatic variations and favor 

the virus circulation. When is conjugated with other conditions, then 

circulation increases. [16]. As a result of the super saturation and the 

increase of condensation in upper respiratory airways, destructive 

additional eff ects appear, which could have a releasing role in 

weakening the respiratory airways defense mechanisms and so the 

increase of the infl ammation, dysfunction of the respiratory airways, 

bronchoconstriction and increase of the snot viscosity in respiratory 

airways [42,43]. Th e ARCH component in the model is simulating 

the variability (volatility) of RSV produced in the previous month 

and how it infl uences in the prediction, which is collected in the 

autoregressive component of information. In this case, it describes 

the consequence of an outbreak (pick), an intervention, or a climatic 

anomaly described by the climatic indexes above mentioned on the 

RSV performance. Th erefore, using the previous model, the sign of 

climatic variability given by the monthly or bimonthly pattern that 

takes place regularly can be picked up, keeping expressed by the 

autoregressive component. While, change in variability sign width 

from a process to another is picked up in change component of 

variance, which is predicted, allowing preview the next pick. From all 

the above-mentioned it’s possible to infer that praise worthy models 

for the simulation and prediction of RSV has been found, which 

allowed to give an explanation by means of models on mechanisms 

that they describe. Th en the founded models are adequate and off er 

the possibility of being used for the surveillance of dangerous climatic 

situations for the human health. However, although the model is 

appropriate, it presents a positive bias, that is a trend to over estimating 

the behavior of the virus values, although it is not worrying since the 

value of the systematic error of the model is framed inside the variance 

of the original variable. Th ese results confi rm the statement [44] that 

Table 3: Coeffi cient of the autoregressive spatial model and main statistic to 
RSV.

Variables Coeffi cients Std. Error t value Pr(>|t|)

ρ (rho) 0.6085 0.0342 14.9112 0.0000**

Constant 2.2495 0.5147 4,3704 0.0000**

x 0.0123 0.0024 5.04128 0.0000**

y 0.0128 0.0053 2.3977 0.0168*

IB 1,t,Pred 0.7762 0.2288 3.3917 0.0007**

*p < 0.01         ** p < 0.001.

Figure 2: Prediction of the Respiratory Syncytial Virus (RSV) activity in 
percent, with the information of positive samples obtained from the laboratory 
reports of 2017.
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prediction models in which conditional variance is considered, are 

preferable to the unconditional ones (pure ARMAX) [18]. Since 

prediction errors are smaller, obtaining better results, then the high 

level of agreement achieved between the predicted and the real series 

values of the RSV is evidenced using the models with variance change 

and incorporation of complex climatic indicators.

Spatial scale

Th e signs of all coeffi  cients belong together with the relationships 

found between the climate and VSR behavior, which confi rms that 

positive anomalies in the rainy period (high humidity, high frequency 

of rainy and cloudy days), conditions which propitiates days with less 

amount of light-hours that favor the RSV circulation. Spatially, RSV 

behavior and infl uence that geographical and climatic conditions 

have can be explained. Th e fi rst one when the position in the plan is 

incorporated and the second one with the incorporation of BI 
1,t

,
pred

 

what allows to explain, by a very simple equation, the relationship 

(Pred RSV = f) (RSV
-1

, x,y, BI 
1,t,Pred

). Th e high signifi cance and 

quality of achieved adjustments can be observed. Th erefore, space 

distribution of RSV is confi rmed as not random, but it is fi xed to 

the physical-geographical characteristics of the setting, the climate 

variations and the virus characteristics, that fi nd more favorable 

conditions for their development in some regions more than in 

others. Th en it evidences that simultaneous resolution spatial model 

(estimation of the coeffi  cients together with the rest of parameters), 

are appropriate to our objectives and hypothesis, because our 

purpose was to model the spatial dependence and not fi ltered, and 

the autoregressive model has provided us an appropriate simulation 

of this spatial dependence [1]. Th e high signifi cance and quality of 

the achieved adjustments is highlighted. Th e model’s autoregressive 

structure represents contagion (rho) between neighbors, where 

exogenous variables spread between neighboring units, allowing 

us to understand the dispersion and confi guration of RSV and lags 

(distances), the infl uence of one region over the next, as well as 

describing the infl uence of climate variability as a determinant in 

each region (the spatial lags and the endogenous variable explain 

the direct relationship between neighboring units). Th is confi rms 

the need to understand both spatial and temporal variability in each 

region in order to understand RSV. Our results confi rm that Bulto 

indexes of climate variability are excellent predictors of RSV spatial 

distribution that are suitable and consistent as surveillance indicators 

[11]. Th e model has high prediction eff ectiveness as for the months 

and areas of viral circulation, with agreement levels between 85% 

and 93%, being the proposed appropriate models for its inclusion in 

the Cuban Early Warning System. Although models here proposed 

are more commendable than when considering explicitly the 

heterogeneity and volatility, when implementing then, limitations 

and uncertainty should be kept in minds. Statistical models where 

change in variance, spatial position and distribution in an explicit 

way are considered, although have had a wide development in the 

last decades, they still have limitations [16,45].  For instance, in the 

advance of methods itself (asymmetry modeling) and by geo-referred 

data readiness (virology and climatic). Besides, when the data of 

RSV of administrative geographical areas (counties, municipalities, 

etc.) are taken, sometimes they could not be the most appropriate 

to describe the studied phenomenon, since it is not necessarily 

adjusted to the geographical unit. Another uncertainty is that many 

of the spatial statistic methods have been dedicated to model grouped 

data (by area or polygon), so there is a risk of ecological fallacy [45].  

Hence it is so important to understand the aggregation states, the 

kind of temporal and spatial variation and why heterogeneity is 

present, and then defi ning the interactions matrix and the model. 

Th e sensibility analysis of the model was not included in this paper; 

however, it was performed from the climatic indicator explicit in the 

model (BI). It was evidenced that changes in the IB don’t alter the 

order neither the parameters of the model. Since the point of view of 

prediction, a substantial change is present; for example, if a change 

in climate is assumed, the prediction changes quickly, showing its 

sensibility to the climate changes and variations. If the model is run 

with two scenarios, one of higher climatic variability and trend to be 

warmer and rainier (more positive values of the index), this generates 

a diff erent behavior with an increase of the RSV circulation. On the 

other hand, if conditions trend to more negative BI values (colder 

and dryer conditions) an RSV decreasing is shown, what corroborates 

high sensibility to climate changes and variations of RSV. It means, 

the model keeps its stability regarding the order of the parameters, 

but changes the predictions output. It is very logical that such changes 

are show on the RSV series, being then modulated by those changes 

[1]. Th ey were not explicitly considered other factors in the sensibility 

analysis because lack of information. But as the proposed models 

are of conditional variance and changing heterogeneity in the time, 

which are incorporated in the model formulation, both spatial as 

temporal; then somehow, if RSV series change, the model refl ects the 

changes in some of the other factors, in an implicit way, because this 

modulates their behavior.

CONCLUSIONS

Th e suitability and superiority of the Integrated model AR (p)-

ARCH (q) on ARMAX model (in which the heterogeneity of the 

viral circulation is not incorporated) was corroborated.  Th e proposal 

simulates and predicts in an appropriate way RSV circulation in the 

country, with a high predictive capacity. Th e use of spatial weight 

matrix by distance inside the Spatial Autoregressive (SAR) model 

was proven as appropriate for simulation of RSV circulation. A space 

SAR model was proposed, with satisfactory results for identifi cation 

of more danger areas from climatic conditions for RSV circulation. A 

model to both temporal and spatial prediction for RSV was developed 

from climatic conditions. It allows to strengthen health surveillance 

and to safeguard the population’s life especially of children.
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