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The presence of plaques and neurofibrillary tangles (NFTs) are 
the hallmark neuropathology associated with Alzheimer’s disease 
(AD); however AD is also characterized neuropathologically by 
neurodegeneration.  My laboratory and many others have shown 
a substantial loss of noradrenergic cell bodies in postmortem brain 
tissue of AD subjects in the locus coeruleus (LC), the major source 
of noradrenergic projections to the whole brain (Marcyniuk et al. 
1986; Chan-Palay and Asan, 1989; German et al. 1992; Szot, et al. 
2006; McMillan et al. 2011).  The degree of LC loss correlates with 
the degree of cognitive decline, indicating the importance of the 
noradrenergic nervous system to learning and memory (Bondareff 
et al. 1981; Matthews et al. 2002).  Associated with this loss of LC 
neurons in postmortem AD subjects, my laboratory observed several 
compensatory changes at the cell body region and at terminal regions 
such as frontal cortex (FC) and hippocampus (HP).  The surviving 
LC neurons demonstrate a compensatory increase in the mRNA 
expression in rate-limiting enzyme tyrosine hydroxylase (TH) 
(Szot et al. 2006).  The increase in TH mRNA expression per cell 
corresponded to the loss of TH-positively labeled cells, i.e., the greater 
the degree of neuronal loss, the more TH mRNA expression per cell 
occurred.  It is unclear if this increase in TH mRNA translates into 
increased protein and norepinephrine (NE) in the CNS.  The other 
compensatory change in the surviving LC neurons is at the dendritic 
level.  The NE transporter (NET), which is selective for noradrenergic 
neurons, localized over the cell bodies is correlated to the number 
of noradrenergic neurons in LC; but NET binding over the peri-
LC dendritic region that surrounds the cell bodies isn’t altered as 
compared to control subjects despite the loss of cell bodies (Szot et al. 
2006), this suggests compensatory changes in dendritic innervation 
surrounding LC neurons.  The autoreceptor (2-adrenoreceptor (AR)) 
localized to the dendrites in the LC also demonstrate a degree of 
compensatory (Szot et al. 2006).  The autoreceptor localized on LC 
axon terminals in the HP and FC of postmortem AD subjects also 
indicate the surviving LC neurons in AD subjects are compensating 
for the loss (Szot et al. 2006, 2007).  Changes in the noradrenergic 
system are also observed postsynaptic to the LC neurons;, an increase 
in postsynaptic 1-AR in the HP and FC of postmortem AD subjects.  
These changes documented in the noradrenergic nervous system in 
postmortem AD subjects suggest an increased activity.  It is unclear is 
these changes late in the progression of AD are a direct consequence 
of LC noradrenergic neurons or due to other factors that are altered 
in AD.  

Neuropathological markers associated with AD occur many years 
before the on set of cognitive impairment, with the LC being one of 
the earliest regions affected (Braak and Del Tredici, 2011a,b,2012; 
Braak et al. 2011, 2013).  In the studies performed in postmortem 
human tissue the loss of LC neurons was approximately 80-90%, 
late in the progression of AD.  Since AD is a progressive disorder, 
it can be hypothesized that LC neuronal loss will be gradual.  To 
determine how changes in the noradrenergic nervous system affect 
the progression of AD, animal models of LC neuronal loss are 
required.  My laboratory uses direct injection of the neurotoxin 
6-hydroxydopamine (6-OHDA) into the LC bilaterally (Szot et al. 

2012a,b) to reduce the number of LC neurons.  Injection of 6-OHDA 
into the LC area affected only noradrenergic neurons in the LC 
and it did not affect dopaminergic neurons in the substantia nigra/
ventral tegmental area (SB/VTA) (Szot 2012b).  The reduction in LC 
neurons induced by 6-OHDA is not associated with compensatory 
response in TH mRNA in the surviving cells (Szot et al. 2012a,b); 
suggesting the compensatory response of TH in postmortem AD 
subjects may be due to some other factor associated with AD.  The 
loss of LC neurons does result in a reduction in NET binding sites 
and tissue concentration of NE at axonal regions in the cortex, HP, 
amygdala and SN/VTA (Szot et al. 2012a,b).  The reduction in NET 
and NE concentration in forebrain regions such as the cortex and HP 
correlates significantly to the loss of LC neurons (Szot et al. 2012a,b).  
However, the autoreceptor 2-AR demonstrates a reduction in specific 
areas of the forebrain (including the HP), but the loss does not 
correlate to the degree of LC neuronal loss.  As observed in AD, when 
there is a loss of LC neurons there is an increase in postsynaptic 1-AR 
binding sites in many forebrain regions including the FC, bed nucleus 
of the stria terminalis, and thalamus (Szot et al. 2012a).

Since AD is a progressive neurodegenerative disorder and the 
LC noradrenergic nervous system appears to be affected early in the 
progression of AD, my laboratory wanted to determine if an early 
loss of LC could mediate some of the early symptoms of AD.   The 
CNS noradrenergic system has been implicated in the pathobiology 
of depression (Chandley and Ordway, 2012), though it is unclear if 
a loss of LC neurons results in depression.  Depression is a common 
co-morbid condition most often observed in subjects with mild 
cognitive impairment (MCI), or very early in the progression of AD 
(Bhalla et al. 2009; Benoit et al. 2012; Lebedev et al. 2014).  Again, LC 
neuronal numbers were reduced with the bilateral administration of 
6-OHDA in a dose-dependent manner (5, 10 and 14 g/l) (Szot et al. 
2016).  To assess depressive-like behavior three weeks after 6-OHDA 
induced LC neuronal loss, a modified version of the forced swim 
test (FST) (Porsolt et al. 1978) was performed.  Interestingly, only 
the lowest dose of 6-OHDA (5 g/l), with a minimal reduction in LC 
neurons, resulted in a significant increase in the FST immobility time 
(i.e., depressive-like behavior); even though the 10 and 14 g/l dose 
of 6-OHDA significantly reduced the number of LC noradrenergic 
neurons (Szot et al. 2016).  In animals that received 6-OHDA (all 
doses), a significant positive correlation was observed between the 
number of surviving LC neurons and the amount of time spent in 
the immobile phase in the FST.  This data indicates that animals with 
a minimal loss of LC neurons due to LC 6-OHDA (or had a greater 
number of surviving LC neurons) had longer FST immobile times, 
while animals with a greater loss of loss LC neurons (or less surviving 
neurons) spent less time in the immobile phase.  This depressive-
like behavior of a low dose of 6-OHDA was also observed with the 
sucrose consumption test, another behavior model of depressive-like 
behavior (Szot et al. 2016).  Electrophysiological characteristics of 
the surviving LC neurons at the time this depressive-like behavior is 
observed demonstrated increased activity (increased firing frequency, 
more irregular firing pattern, and higher percentage of cells firing in 
burst) (Szot et al. 2016).  The clinical implication of these findings 
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is that the depression observed mainly in the early stages of AD can 
be attributed to a minimal loss of LC neurons, may also explain why 
depression appears to remit in AD (Lee et al. 2007; Lyketsos et al. 
2011; Wang et al. 2012; Lebedev et al. 2014; Van der Mussele et al. 
2014).  

FUTURE FOCUS
The data presented indicates that the loss of LC neurons early 

(animal studies) and late (postmortem AD subjects) in the progression 
of AD may display compensatory changes.  When LC neuronal loss is 
minimal as observed in MCI or early AD, there is enhanced activity 
of the surviving LC neurons, which is associated with depressive-
like behavior.  Future work would be to determine if these changes 
are translated into an increase in synaptic release.  An enhanced 
noradrenergic system could also affect the clearance of the main 
pathological markers of AD, plaques and tangles.  A newly described 
central nervous system clearance system called the glymphatic could 
affect the progression of AD.  The glymphatic system plays an integral 
part in the clearance of amyloid and tau from the brain (Iliff et al. 
2012; Jessen et al. 2015; Simon and Iliff, 2015; Tarasoff-Conway et al. 
2015).  The glymphatic system is “turned on” during normal sleep and 
substantially decreases during the awake state.  The neurotransmitter 
norepinephrine (NE) is a key regulator of the switch between sleep 
and wakefulness, with low CNS noradrenergic activity facilitating 
normal sleep and high CNS noradrenergic activity driving aroused 
wakefulness.  If the noradrenergic system is enhanced early in the 
progression of AD, this enhance noradrenergic system could affect 
the clearance of the early, future work would be to determine how an 
altered noradrenergic system affects plaques and NFT.
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