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INTRODUCTION

Neurodegenerative diseases, such as Parkinson’s Disease (PD), are 

associated with accumulation of misfolded and aggregated proteins, 

resulting in neuronal dysfunction and cell death [1]. Th e assembly 

of the synaptic protein α-Synuclein (aS) to amyloid fi brils has been 

linked to the molecular basis of PD. aS is the major constituent protein 

in the amyloid aggregates found in Lewy body inclusions, which are 

pathological hallmarks of PD, and duplications, triplications and 

point-mutations in the aS gene are related to familial PD cases [2-5]. 

Chaperone proteins are considered the fi rst line of defense against 

misfolded and aberrantly aggregated proteins. Chaperone expression 

in humans is primarily determined by the activation of Heat 

Shock Transcription Factor 1 (HSF-1), a master stress-protective 

transcription factor found in most organisms [6]. Several reports 

have linked intracellular HSF-1 loss to neurodegeneration, with 

Huntington’s disease as the best characterized example [7,8] for which 

there is direct evidence of huntingtin-mediated HSF-1 degradation 

[9]. It appears that HSF-1 degradation is also a key part of the 

deleterious cascade in PD, as a recent study elegantly demonstrated 

HSF-1 degradation caused by aggregated aS in neuroblastoma and 

HEK293 cell lines [10,11]. Enhancing protein folding capacity of cells, 

via elevated expression of chaperone proteins, may have therapeutic 

potential against neurodegeneration [12].

We recently extended our biophysical work on aS amyloid 

formation [13-17] to mice and Drosophila models [18,19]. In 

comparison to mice, fl y models are attractive as they have a short 

life cycle, very low comparative costs and allow for powerful genetic 

manipulations [20]. Several fl y models recapitulate essential features 

of PD [20] upon aS over-expression [21,22] including selective and 

progressive loss of dopaminergic neurons [23,24]. HSF is encoded 

by a single-copy gene in Drosophila, and is similar to human HSF-

1: it is induced by heat stress and activation involves stress-induced 

oligomerization that promotes DNA binding [25]. Sequence and 

functional features of all metazoan HSF proteins (including the 

Drosophila HSF and human HSF-1) are similar and include an 

N-terminal DNA-binding domain, followed by a long hydrophobic 

repeat sequence that contains the oligomerization domain, and 

then, in the C-terminus, a transactivation domain [26]. Notably, the 

C-terminal region of human HSF-1 could functionally substitute for 

the corresponding region of Drosophila HSF [27].

Here we investigated a putative link between HSF and human aS 

in a Drosophila PD model that expresses human aS. We previously 

used these aS-expressing fl ies as an in vivo PD model to test the 

eff ects of small molecule compounds known to modulate aS amyloid 

formation in vitro [18]. To analyze motor functions of aS-expressing 

fl ies quantitatively, and as a function of small molecule drug leads, 

we developed an optical automated analyzer of walking and climbing 

locomotor behavior of fruit-fl ies [28]; see also http://www.airoptic.pl/

en/about-us/research-programs. From our current experiments, we 

fi nd an inverse correlation between the amounts of levels of HSF and 

aS proteins in the fruit fl ies, suggesting that HSF (HSF-1 in humans) 

down-regulation is linked to PD development. Th erefore, underlying 

molecular mechanisms and pathways can be investigated (and 

eventually screened for modulators) in this attractive and genetically 

powerful model organism.

MATERIALS AND METHODS 

Expression of WT aS (stock #8146; w[*]; P{w[+ mC] = UAS-Hsap\

SNCA.F} 5B, Bloomington Drosophila Stock Center BDSC, Indiana 

University) and mutant A30P aS (BDSC #8147; w[*]; P{w[ + mC] 

= UAS-Hsap \ SNCA.A30P}40.1) was achieved with a pan-neuronal 

nSyb-Gal4#2-1 driver line used previously [29]. For controls, we used 

progeny of w1118 (BDSC #6326) or wild-type Oregon-R strain (BDSC 

#6361) crossed with the nSyb-GAL4. Flies were kept at 60% humidity 

(20°C; 12:12 h light:dark cycle, standard food) until eclosion, and at 

29°C (low-melt fl y food [18]) post eclosion.

Protein extraction followed a modifi ed protocol from [30]. 

For each analysis sample, twenty fl y heads were homogenized in 

extraction buff er (20 mM Tris pH 7.6, 50 mM NaCl, 1% Triton X-100, 

protease inhibitor cocktail), vortexed and incubated on ice (30 min). 

Aft er centrifugation (60 min, 15 x 1000g, 4°C), supernatants were 

mixed with 4x LDS Sample Buff er and DTT containing 10x Sample 

Reducing Agent. Pellets were re-suspended in SDS buff er (50 mM 

Tris pH 7.6, 5 mM EDTA, 4% SDS), vortexed and boiled (10 min). 

Supernatants aft er centrifugation (10 min, 15 x 1000g) were mixed 

with 4x LDS Sample Buff er and DTT, as above, boiled and frozen 

until use. Th ree diff erent sets of 20-day old fl y samples (wild-type 

aS-, A30P aS-expressing and control) were analyzed and data shown 

represent mean values ± SD. Additional samples from 10-day old fl ies 

(wild-type aS-expressing and control) were also taken. 

For Western blot analyses, all protein samples were acetone-

precipitated (Th ermoFisher Scientifi c, TR0049.1) and re-suspended 

in SDS buff er. Protein concentration was estimated with Pierce 

Microplate BCA-RAC Protein Assay Kit. Aft er 20 min boiling, 

proteins (4,5 μg/lane) were resolved on NuPAGE® Novex® 4-12% 

Bis-Tris Protein Gels in MES-SDS running buff er and blotted onto 

nitrocellulose membrane using iBlot2 gel transfer device. Primary 

antibodies used were mouse monoclonal against α-tubulin (1:5000, 

clone B-5-1-2, Life Technologies), rabbit polyclonal against human 

aS 1:1000 (AlexoTech AB, Sweden) and rabbit polyclonal against 

HSF 1:1000 (Dr C. Wu) [31]. Detection was performed with Western 

Breeze Chromogenic kit anti-mouse or anti-rabbit, respectively. 

HSF and aS levels were quantifi ed using Gel-Doc XR+ Imager and 

Image Lab 5.2 soft ware (Bio-Rad). Recombinant, human wild-type aS 

standards (AlexoTech AB) were used.

Graphs and statistical data analysis were generated with IBM 
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SPSS 20 Statistics (IBM Corporation, Armonk, NY). Statistical 

signifi cance was determined by General Linear Model multivariate 

analysis of variance (Multivariate GLM, also known as MANOVA), 

followed by Fisher’s post hoc. Th e mean diff erence was considered to 

be statistically signifi cant at the 95% confi dence level. Final fi gures 

were assembled with Adobe Photoshop and Illustrator CC 2015.5 

(Adobe Systems, San Jose, CA).

RESULTS AND DISCUSSION

To ensure robust expression of human aS, we used a Neural 

Synaptobrevin Promoter (nSyb-GAL4), a type that was previously 

shown to yield about 60% increased aS levels compared to the broadly 

used elav-GAL4 neuronal promoter [18,21]. As previously reported, 

pan-neuronal expression of aS accelerates climbing defi cits normally 

seen later in life in control fl ies. Th is premature locomotor decline has 

been associated with intracellular accumulation of aS and the specifi c 

loss of dopaminergic neurons [20,32]. Longevity, on the other hand, 

was shown to be insensitive to aS expression in fl ies and, for fl ies 

raised at our conditions, the median life time is about 27 days [20,32]. 

Next, we took advantage of these aS-expressing fruit fl ies to 

assess for a putative link between HSF and aS protein levels. Using 

Western blot analysis, we fi rst confi rmed that we can detect HSF 

protein in normal fl ies using a polyclonal antibody that was a kind 

gift  from Dr. Wu [33].Th e electrophoresis band pattern for HSF 

(detected with this antibody) was similar to previously reported [33] 

and, for quantitative analysis, we normalized HSF bands to tubulin. 

Next, we selected the time point of 20-day old fl ies for comparison of 

protein levels, as it is close to the median life span of the fl ies. When 

we analyzed levels of HSF (Figure 1A) and aS (Figure 1B) in protein 

extracts from fl y heads of 20-day old fl ies over-expressing either wild-

type or the disease-causing mutant A30P aS, a strong reduction of 

HSF amount paralleled increased levels of aS compared to control aS 

non-expressing fl ies (Figure 1C).

Th e total aS amount is the sum of soluble and insoluble fractions 

(using Triton to solubilize proteins), with the majority (around 90%) 

of aS appearing in the soluble fraction (Figure 1B). Although total aS 

roughly correlates inversely with the level of HSF (i.e., high aS means 

low HSF; Figure 1C), a negative linear correlation (R2 coeffi  cient of 

0.96) is observed when change in HSF level is plotted against aS soluble/

insoluble ratio for individual samples (Figure 1D). Th is observation 

implies that the higher the soluble aS fraction is detected in fl ies, the 

more extensive loss of HSF protein is observed. Th us, monomeric 

or oligomeric fractions of aS (not insoluble amyloids) promote the 

reactions that reduce HSF levels. Th is is of importance as aS oligomers 

are thought to be the most toxic species in PD [34-37]. Th us, one path 

to cell death in PD in human neurons may be aS-oligomer mediated 

reduction of HSF-1, resulting in increased sensitivity to various 

cellular stresses and perturbations. We speculate that this may be a 

common mechanism that links HSF-1 to both Huntington’s disease 

and PD, and possible to other neurodegenerative disorders as well.

To conclude, the experimental tractability and similarity of 

its biological pathways to those of humans have placed fruit fl ies 

at the forefront of research on human neurodegenerative diseases 

[23,24]. Here we discovered that, in similarity with what was found 

in human cells and in mice [9,10], HSF levels are strongly reduced 

upon accumulation of aS in Drosophila brains. Th is result opens up 

for exploitation of the extensive genetic tool-kit off ered by fruit fl ies 

to study gene products and pathways involved in HSF inactivation 

in PD.
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