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INTRODUCTION
Methylphenidate (MPD), more commonly known at Ritalin® 

or Concerta ®, is a psychostimulant that is prescribed to treat 
behavioral disorders such as Attention Defi cit Hyperactivity 
Disorder (ADHD) but is increasingly being misused and abused 
as a cognitive performance enhancer or recreational stimulant in 
normal individuals [1-5]. Th is has been driven by the rapid increase 
in patients diagnosed with Attention Defi cit Hyperactivity Disorder 
(ADHD) for which MPD is the drug of choice [6-10], as well as the 
rise in non-prescription use of MPD for academic enhancement and 
recreation [7,11-15].

Th is is of concern as MPD shares pharmacologic characteristics 
with other addictive psychostimulants such as amphetamine and 
cocaine, and could thus share similar addictive potential [6,16-20]. 
MPD, like amphetamine and cocaine, acts as an indirect dopamine 
agonist by inhibiting the dopamine reuptake at the pre-synaptic 
terminal, leading to increased dopamine within the synaptic cleft  
[21-23]. Acute MPD exposure produces an increase in behavioral 
locomotor activity; chronic use elicits sensitization, tolerance, and/
or withdrawal which are behavioral markers indicating a substance 
has the potential to elicit dependence [17,26-29]. Sensitization is a 
sustained increase in behavioral activity beyond the acute eff ect 
following chronic administration of a substance [30-31]. 

Th e Central Nervous System’s (CNS) reward system is known to 
participate in the long-term changes associated with substance abuse 
[31-37]. Th e circuit consists of multiple CNS structures; however 
the core pathway is the mesolimbic pathway in which dopaminergic 
neurons from the Ventral Tegmental Area (VTA) project to the 
Nucleus Accumbens (NAc) and the ventral striatum, then onwards 
to the Prefrontal Cortex (PFC). Th e Nucleus Accumbems (NAc) is 
a reward circuit structure that is critical for motivation, emotion, 
limbic functions, and motor execution [30,38-43]. Non-specifi c 
and dopaminergic specifi c lesions to the NAc have shown it to be 
critical to regulating the response to MPD [44,45], however the role 
of the glutaminergic system remains uninvestigated. Glutaminergic 
signaling has been shown to modulate the long-term response 
between other reward/motive circuit nuclei [26,28,29,36,44,46-60], 
and it known to participate in inputs to the NAc, however its role in 
the acute and chronic response to MPD is unknown.

Th is study set out to determine if the glutaminergic system of the 
NAc participates in the response to MPD. To do this, 3 groups of 

animals were used: NAc intact controls, NAc sham lesion, and NAc 
specifi c glutaminergic chemical lesions. Animals were exposed to 
acute and chronic (repetitive) MPD and the response was monitored 
with a computerized monitoring system in an open fi eld assay.

MATERIALS AND METHODS:
Animals

Twenty-four male Sprague-Dawley rats weighing 170-180g 
were obtained from Harlan Labs (Indianapolis, IN, USA). Animals 
were individually placed in plexiglass cages (40.5x40.5x31.5 cm 
in dimension) in a soundproof room without disturbance to 
the experimental environment for 4-5 days to acclimate prior to 
experimentation. Th ese cages served as the home and test cage. 
Animals were maintained on a 12-hour light/dark cycle that began 
at 06:00. Food and water were provided ad libitum throughout the 
experiment, and the temperature was kept at 21 ±2°C with a relative 
humidity of 37–42%. At the beginning of the experimental phase, 
the rats were weighed and randomly divided into three groups: 
NAc-intact controls (n=8), sham operation (n=8), and ibotenic acid 
chemical ablation of the glutaminergic system (n=8). Th is protocol 
was approved by our Animal Welfare Committee and carried out in 
accordance with the National Institute of Health Guide for Care and 
Use of Laboratory Animals. 

Experimental Procedure (Table 1)

Rats were given 4-5 days to acclimate in their home cage before 
experimentation. On experimental day 1 (ED 1-Sal) animals were 
weighed and 0.8 mL of 0.9% saline was administered Intra-Peritoneal 
(ip). All animals weighed 200-220g at that time. Locomotive 
behavioral activity was recorded for 120 minutes post-injection to 
establish a baseline prior to surgical manipulation. On experimental 
day 2 (ED 2), the lesion and sham groups underwent surgery and 
were then allowed to recover for approximately 5 days (ED 3-7).  On 
experimental day 8, saline was re-administered (ED 8-Sal) and post-
surgical locomotor activity was recorded for 120 minutes to compare 
with the pre-surgical baseline (ED 1-Sal). Starting on experimental 
day 9 (ED 9-MPD), daily injections of 2.5 mg/kg MPD (Mallinckrodt, 
Hazelwood MO) dissolved in 0.8 mL of 0.9% saline were administer 
for 6 consecutive days (ED 9-MPD to ED 14-MPD), and activity 
recorded for 120 minutes post-injection. Th is dose of 2.5 mg/kg MPD 
has been shown to be suffi  cient to elicit behavioral sensitization in 
rats in previous dose-response experiments [27-29,49,52,61-68]. 
For the next 3 days (ED 15-17), animals received no injections (the 
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washout period). Aft er the washout period (ED 18-MPD), the rats 
were re-challenged with MPD at the previous dose of 2.5 mg/kg 
and behavioral activity was observed for 60 minutes (the expression 
phase). All boluses were given at approximately 07:30 in the morning 
in 0.8 mL volumes.

Surgical Procedure (ED 2)

On ED 2, the sham operation group, and the ibotenic acid group 
animals were anaesthetized with 60 mg/ kg pentobarbital and placed 
in the stereotactic apparatus. An incision was to expose the skull. 
For surgery, holes were drilled in the skull 1.7 mm anterior from the 
bregma and 1.6 mm lateral to the midline bilaterally based on the 
co-ordinates derived from Paxinos and Watson Rat Brain Atlas [69].

Sham operation: For the sham group, the animal was anesthetized, 
the skin opened, holes drilled in the skull, and a 27G cannula was 
inserted bilaterally to a depth of 6.8 mm but no agent administered.  
Th e cannulas were then removed, and the incision closed with wound 
staples.

NAc Glutaminergic system ablation: For the glutaminergic 
ablation group, ibotenic acid, a glutaminergic toxin, was employed 
[70-74]. A 27G cannula was inserted bilaterally to a depth of 6.8 mm. 
5 μg of ibotenic acid was dissolved in 5 μl of 0.9% normal saline was 
slowly infused then the cannula left  in place for 6 minutes to allow 
for full diff usion. Th e cannulas were then removed, and the incision 
closed with wound staples.

Apparatus

Behavioral locomotive activity was recorded using the open fi eld 
computerized animal activity monitoring system (CAAM, AccuScan 
Instruments, Inc., Columbus OH). Th e CAAM system consists of 2 
arrays of 16 infrared light beams with sensors on the opposite side, 
spaced every 2.5 cm that cross orthogonally through the plexiglass 
cage. Sensor polling frequency was set at 100 Hz. Movement of the rats 
interrupted the infrared light beams, and each beam-break detected 
by a sensor was collected as an event by the AccuScan Analyzer 
and transferred to a computer. Events over a 5-minute period were 
summed, giving 12 5-minute bins for each hour of observation. Th ese 
bins were transferred to the OASIS data collecting soft ware and three 
indices of behavioral locomotion were compiled for each collection 
period: total travelling distance (TD)- all forward locomotion in cm, 
horizontal activity (HA)- the overall movement in the lower level of 
the cage, and the number of stereotypic movements (NOS)- episodes 
of purposeless, repetitive movement in the upper level of the sensors 
separated by at least 1 second.

Histology (Figure 1)

At the conclusion of the experiment, animals were overdosed 
with sodium pentobarbital and perfused with 10% formaldehyde. 

Th e brains were removed stored in 10% formaldehyde. 60 μm 
thickness coronal sections were cut, stained, and scanned with a high-
resolution scanner to identify lesion size and location correlated to 
the NAc using the Paximos and Watson rat brain atlas [69] (Figure 1).

Data analysis

Rat behavioral locomotive activity was quantifi ed by three 
compiled indices of movement (HA, TD, NOS) obtained in twelve 
5-minute bins collected the hour aft er injections for each rat were 
averaged across each experimental group based on the experimental 
day to allow for comparisons. Post-surgical manipulation eff ects 
on baseline behavioral locomotor activity were determined by 
comparing the animal’s activity aft er a saline injection before and 
aft er the surgical intervention (ED 8-Sal vs. ED 1-Sal). Th e acute 
eff ects of MPD were determined by comparing the fi rst day of 
MPD administration to the post-surgical baseline (ED 9-MPD vs. 
ED 8-Sal). Th e eff ects of repetitive (chronic) MPD exposure over 6 
consecutive days on behavioral locomotor activity were determined 
by comparing the fi nal day of administration to the fi rst, i.e. the 
induction phase (ED 14-MPD vs. ED 9-MPD). Th e eff ects of chronic 
MPD exposure following a washout period on behavioral locomotor 
activity were determined by comparing MPD re-challenge to the 
initial administration, i.e the expression phase (ED 18-MPD vs. ED 
9-MPD) (See table 1). Signifi cance of change among these within-
group comparisons was determined by ANOVA, with repeated 
measures with adjustments for correlation among measurements 
within each animal. Post ad hoc comparisons were used to estimate 
changes between days within groups. A p-value<0.05 was considered 

Table 1: Methylphenidate administration schedule. The table shows the experimental treatment protocol for the 3 groups of rats used. Each group consisted 
of N=8 rats. Displayed are the Experimental Days (ED’s) and the intervention performed (surgery, washout, normal saline or methylphenidate (MPD) 2.5 mg/kg ip 
injection in 0.8 ml at 07:30). 

Group
Experimental Schedule

ED 1* ED 2 ED 3-7 ED 8* ED 9-14* ED 15-17 ED 18*
Control Saline Saline MPD Washout MPD re-challenge
Sham Saline Surgery Recovery Saline MPD Washout MPD re-challenge

Ibotenic acid 
lesion Saline Surgery Recovery Saline MPD Washout MPD re-challenge

* indicates day rat behaviors were immediately recorded post-injection. The experiment lasted 18 experimental days. The experimental schedule began after several 
days of acclimatization of the rats to their home/experimental cages

Figure 1: Histological reconstruction of NAc lesions. This fi gure shows 
the histologic reconstruction of the NAc lesions, denoted below each series 
of sections, on rat atlas plates (Paxinos an Watson, 1986) in relation to the 
anterior distance from bregma in millimeters (mm). The black rings in ibotenic 
acid lesion sections represent the canula placement for injection; the gray 
fi elds behind them represent the approximate area aff ected.
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statistically signifi cant. Th e eff ects of the ibotenic acid lesion were 
determined by comparing the ibotenic acid lesion group to both the 
control and sham groups on each of the recording days (ED 1-Sal, 
ED 8-Sal, ED 9-MPD, ED 14-MPD, and ED 18-MPD). For these 
between-group comparison, rat locomotive activity was interpreted 
as the percent change from baseline for each of the indices. Baseline 
activity was defi ned as the average movement of an experimental 
group on the fi rst experimental day post saline injection (ED1-Sal) 
for each locomotive index and thus experimental day 1 (ED1-Sal) 
had no percent change. Each of the locomotive behavior indices for 
each study-relevant day were calculated as a percent change from 
that baseline. Signifi cance of change among the between-group 
comparisons was determined with the Critical Ratio (C.R.) test. A 
C.R. of greater than 1.96 or less than -1.96, corresponding to p<0.05, 
was considered statistically signifi cant [64,75-77]

RESULTS 
Overall eff ect of MPD on activity (Figure 2)

Figure 2 shows the eff ect of the MPD administration on total 
distance (TD) traveled on the fi ve recording days (ED 1-Sal, ED 8-Sal, 
ED 9-MPD, ED 14-MPD, and ED 18-MPD) for the NAc control, 
sham, and ibotenic acid lesion groups. Surgery with or without 
chemical intervention to the NAc (ED 8-Sal vs. ED 1-Sal) did not lead 
to a statistically signifi cant change in TD for the sham and ibotenic 
acid lesion groups as compared to the control group (Figure 2). 
Similar results were seen in Horizontal Activity (HA) and number of 
stereotypic movements (NOS). Th is observation indicates that animal 
handling, injection volume, and injection procedure were consistent, 

and that the surgical intervention did not modulate baseline activity. 
Th e administration of 2.5 mg/kg MPD yielded a statistically signifi cant 
(* p<0.05) increase in TD following MPD exposure for all groups 
relative to their post-surgical baseline (ED 9-MPD vs. ED 8-Sal) 
(Figure 2). Similar results were seen in HA and NOS. Administration 
of a repetitive 2.5 mg/kg MPD dose for an additional fi ve consecutive 
days resulted in a further statistically signifi cant (p<0.05) increase in 
TD beyond the acute eff ect of MPD for all groups (ED 14-MPD vs. 
ED 9-MPD) (Figure 2). Similar results were seen in HA and NOS. 
Th is further augmentation in locomotive behavior following repeated 
exposure to MPD confi rms that 2.5 mg/kg MPD induces behavioral 
sensitization. Re-challenge with the same 2.5 mg/kg MPD dose aft er a 
three-day washout period following chronic MPD exposure (six days 
of MPD administration) caused all groups to again show a further 
statistically signifi cant (p<0.05) increase in TD as compared to acute 
MPD administration (ED 18-MPD vs. ED 9-MPD) (Figure 2). Similar 
results were seen in HA and NOS. Th is continued augmentation 
of the response to MPD even aft er drug washout is the continued 
expression of sensitization to chronic psychostimulant use, i.e. the 
expression phase. 

Eff ect of ibotenic acid lesion on total distance traveled 
(Figure 3)

Figure 3 shows the percent change in behavioral activity as 
measured by Total Distance (TD) traveled following both ibotenic 
acid lesions to the NAc and acute and chronic MPD exposure, and 
compares each group (control, sham, and ibotenic acid lesion) to the 
other two groups on each experimental day. A statistically signifi cant 
(p<0.05) diff erence is seen between the ibotenic acid lesion group 

Figure 2: Total Distance traveled (activity count). This fi gure shows the mean Total Distance (TD) traveled and standard error in mm/hour for each of 
the groups on experimental day (ED) 1, 8, 9, 14, and 18. Each group consists of n=8 rats. ED’s within each group were compared using ANOVA. * indicates 
statistically signifi cant (p<0.05) diff erence between ED 9-MPD and ED 8-Sal. ǂ indicates statistically signifi cant (p<0.05) diff erence between ED 14-MPD and 
ED 9-MPD. Ϫ indicates statistically signifi cant (p<0.05) diff erence between ED 18-MPD and ED 9-MPD. 
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and the control group only on ED 9-MPD following acute MPD 
exposure. A statistically signifi cant (p<0.05) diff erence is also seen 
between the sham lesion group and the control group only on ED 18-
MPD following MPD re-challenge aft er a 3-day washout period. No 
signifi cant diff erence was seen between the ibotenic acid lesion group 
and the sham lesion group. Th e similar overall response to MPD and 
the inconsistent diff erences between the ibotenic acid lesion, sham, 
and control groups indicates that glutaminergic signaling does not 
participate in the TD traveled in response to MPD.

Eff ect of ibotenic acid lesion on horizontal activity (Figure 
4)

Figure 4 shows the percent change in behavioral activity as 
measured by forward motion traveled, i.e. horizontal activity (HA), 
following ibotenic acid lesions to the NAc and acute and chronic MPD 
exposure, and compares each group (control, sham, and ibotenic acid 
lesion) to the other two groups on each experimental day. Compared 
to the control and sham groups, the group that received bilateral 
ibotenic acid lesions to the NAc showed a signifi cant diff erence 
between the control (p<0.05) and the sham (* p<0.05) groups in 
response to MPD both acutely (ED 9-MPD) and chronically (ED 
14-MPD and ED 18-MPD). Th is signifi cant decrease in forward 
locomotion following glutaminergic lesion to the NAc indicates that 
this circuit facilitates the excitatory eff ect of MPD on HA and forward 
movement behavior.

Eff ect of ibotenic acid lesion on stereotypic behavior 
(number of stereotypic movements, NOS) (Figure 5)

Figure 5 shows the percent change in behavioral activity as 
measured by stereotypic behavior, i.e. the number of stereotypic 
(NOS) movements, following ibotenic acid lesions to the NAc and 

acute and chronic MPD exposure, and compares each group (control, 
sham, and ibotenic acid lesion) to the other two groups on each 
experimental day. Th e group that received bilateral ibotenic acid 
lesions to the NAc showed a signifi cant diff erence (p<0.05) between 
the control group following both acute (ED 9-MPD) and chronic 
(ED 14-MPD and ED 18-MPD) MPD exposure. Th e ibotenic acid 
lesion group also showed a signifi cant diff erence (* p<0.05) between 
the sham lesion group only following acute MPD exposure on ED 
9-MPD. A signifi cant diff erence (p<0.05) was seen between the sham 
lesion and control groups only on ED 18-MPD. Th is consistent 
increase in NOS between the control and lesion group suggests that 
glutaminergic signaling in the NAc plays an inhibitory role in the 
NOS behavioral response. 

DISCUSSION
Th is experiment was conducted to determine the role of 

glutaminergic signaling in the Nucleus Accumbens (NAc) in the 
response to acute and chronic methylphenidate (MPD). Th e fi ndings 
of this work show that in NAc intact animals, 2.5 mg/kg MPD results 
in an acute increase in activity in all locomotor indices studied (TD, 
HA, NOS, Figure 2), and that chronic repetitive exposure results in 
behavioral sensitization- the further signifi cant increase above the 
acute eff ect (Figure 2). Th is eff ect is clearly modulated following 
a specifi c bilateral glutaminergic lesion to the NAc with ibotenic 
acid, with HA showing a consistent signifi cant diff erence from 
the NAc intact control and sham groups following both acute and 
chronic 2.5mg/kg MPD exposure (Figure 4), and NOS showing a 
consistent signifi cant diff erence from the NAc intact control group 
following both acute and chronic 2.5mg/kg MPD exposure (Figure 
5). Inconsistent diff erences were seen in TD traveled (Figure 3). 
Th ese fi ndings indicate that distinct glutaminergic circuits in the NAc 
modulate diff erent behavioral responses to MPD.

Figure 3: Total distance traveled (percent change). This fi gure shows the mean Total Distance (TD) traveled and standard error for each of the experimental 
days (ED) 1, 8, 9, 14, and 18 for each group as a percent change from the ED 1-Sal baseline. Experimental groups were compared across a given ED using 
the CR test. ǂ indicates a statistically signifi cant (p<0.05) diff erence between the ibotenic acid lesion group and the control group. ♣ indicates a statistically 
signifi cant (p<0.05) diff erence between the sham lesion group and the control group.
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Figure 4: Horizontal activity traveled (percent change). This fi gure shows the mean horizontal activity (HA) traveled and standard error for each of the 
experimental days (ED) 1, 8, 9, 14, and 18 for each group as a percent change from the ED 1-Sal baseline. Experimental groups were compared across a given 
ED using the CR test. ǂ indicates a statistically signifi cant (p<0.05) diff erence between the ibotenic acid lesion group and the control group. 

Figure 5: Number of stereotypic behaviors (percent change).  This fi gure shows the mean number of stereotypic movements (NOS) traveled and standard 
error for each of the Experimental Days (ED) 1, 8, 9, 14, and 18 for each group as a percent change from the ED 1-Sal baseline. Experimental groups were 
compared across a given ED using the CR test. ǂ indicates a statistically signifi cant (p<0.05) diff erence between the ibotenic acid lesion group and the control 
group. * indicates statistically signifi cant (p<0.05) diff erence between the ibotenic acid lesion group and the sham lesion group. No diff erence is seen between 
the control and sham groups. ♣ indicates a statistically signifi cant (p<0.05) diff erence between the sham lesion group and the control group.
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Th e NAc is a structure located near the anterior commissure 
that is critical for the motivation and reward-seeking behavior. It 
is composed primarily of dopaminergic Medium Spiny Neurons 
(MSN’s) and is divided into a shell and a core that mediate diff erent 
functions [78-83]. Th e NAc receives input primarily from the VTA, 
in addition to inputs from the substantia nigra, the amygdala, the 
hippocampus, and the PFC. Th e NAc outputs ascend to various basal 
ganglia and midbrain structures including the substantia nigra, the 
VTA, the ventral pallidum, the thalamus, the subpallidus, and the 
stria terminalis [81,84-87].

Previously reported lesions to the NAc have confi rmed its role in 
mediating the behavioral response to MPD [44,45]. Psychostimulants 
such as MPD cause an increase in dopaminergic transmission from 
the VTA to the NAc, and increased dopamine within the NAc leads 
to increased locomotion [88-90]. Direct chronic microinjection 
of other addictive substances such as amphetamine, cocaine, 
or morphine into the NAc can induce behavioral sensitization 
[38,91-99], suggesting that the NAc is involved in the induction of 
behavioral sensitization. Non-specifi c lesions to the NAc have been 
shown to lead to an enhanced acute eff ect of MPD, but absent long-
term behavioral changes such as sensitization following chronic 
exposure [44]. Th is is also seen with amphetamine, cocaine, and 
nicotine [100-106]. Dopaminergic lesions to the NAc have produced 
more complex behavioral changes, with some animals exhibiting no 
increase in locomotor activity following acute MPD exposure and 
others showing a signifi cantly elevated locomotor activity following 
MPD exposure [45]. Animals that responded to MPD acutely did 
not develop behavioral sensitization, while those that showed no 
behavioral change following the dopaminergic lesion did show 
behavioral sensitization [45]. Th is work was noted to not determine 
lesion accuracy which could explain the dichotomy of animal 
responses; however it still indicated that accumbal dopaminergic 
signaling is critical for the response to psychostimulants.

Glutaminergic signaling in the NAc has been unexplored till 
this present study, but has been shown to be critical in other reward 
circuit nuclei [26,28,29,36,44,46-60]. Th is study found that following 
specifi c glutaminergic ablation of the NAc by ibotenic acid, animals in 
general showed the same characteristic response to acute and chronic 
MPD exposure as the control and sham NAc lesion groups, with an 
acute increase in behavioral activity following MPD and then further 
signifi cant augmentation with chronic exposure (Figure 2). However, 
when the diff erent behavioral expressions (HA, TD, NOS) to MPD 
exposure were compared between groups, a signifi cant attenuation 
in the behavioral activity comprising forward motion as measured 
by HA was seen following glutaminergic-specifi c lesions to the NAc, 
while a signifi cant augmentation is seen in stereotypic behavior as 
measured by NOS (Figures 3, 4, & 5). Th is attenuation of HA and 
augmentation of NOS indicates that glutaminergic signaling in the 
NAc is critical in modulating behavior and plays diff ering roles in 
diff erent behavioral signaling pathways. Th is fi ts with the current 
knowledge that glutaminergic inputs to the NAc come from other 
reward circuit nuclei [107,108], and with other work showing that 
glutaminergic signaling is responsible for modulating the core eff ect 
of MPD at other reward circuit nuclei [26,28,29,36,44,46-60].  It also 
seems to indicate that diff erent subcortical circuits govern diff erent 
behavioral responses, as animals with glutaminergic lesions to the 
NAc, HA exhibited signifi cantly less behavioral activity in response 
to both acute and chronic MPD exposure. HA is a measure of forward 
motion and can be regarded as a goal-directed behavior which would 

seem to imply that glutaminergic signaling specifi cally modulates 
motivational circuits versus generalized motor modulation, which 
would involve TD. Th is fi ts with the observation that purposeless 
stereotypic movements as measured by NOS are increased following 
glutaminergic lesions to the NAc, further confi rming the loss of 
volitional behavioral activity. Further work to explore this volitional 
role of glutaminergic signaling in the NAc could utilize other 
behavioral assays of goal-directed behavior such as lever pulling or 
maze running.

Previous work initially determined the NAc shell to be critical 
for the excitatory response to psychostimulants, as it showed the 
greatest response in response to their administration [93,98,109,110]. 
However it is increasingly being recognized that the NAc core also 
participates in the response to psychostimulants [111-114], and that 
both play a role in motivation and behavioral actions [115-117]. Th e 
results seen here agree with emerging work showing that while the 
NAc core and shell are anatomically distinct, distinct circuits between 
them govern diff erent behavioral responses [111-117]. Targeting a 
spherical shell structure with a chemical lesion presents a substantial 
technical problem and further interrogation of these distinctions will 
require further work. 

In conclusion, the NAc is a component of the rewards circuit that 
is critical for the response to MPD. It is divided into a shell and core 
that serve distinct roles in the response to psychostimulants such as 
MPD. Th ree diff erent locomotive behaviors were studied, and it was 
found that lesions to the glutaminergic signaling pathways of the NAc 
resulted in signifi cant attenuation of forward motion HA compared to 
control and sham groups while signifi cant augmentation was seen in 
stereotypic movement, NOS, as compared to controls. Th is diff erence 
indicates that diff erent NAc circuits govern specifi c behavioral 
expressions to acute and chronic MPD and the glutaminergic circuit 
likely modulates volitional responses to psychostimulants.
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