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INTRODUCTION
Survival analysis is a set of statistical techniques for data analysis 

where the dependent variable is the time until the occurrence of 
an event of interest. Th is event of interest can be death, occurrence 
of a disease, failure of a device or recovery from a disease. Survival 
analysis is hampered by censoring, or when complete information 
on a subject’s event is not accessible, therefore general methods of 
statistical inference are not valid [1]. Numerous disciplines, including 
social sciences, engineering, and public health, use survival analysis. 
For example, in the medical sciences, the term “time to event” might 
refer to the amount of time until a cancer study’s tumors reappear. 
Survival analysis is the term that is most frequently used and 
recognized, despite the fact that various disciplines may emphasize 
slightly diff erent methodologies and procedures [2]. 

Th ere are basically three main methods used in the analysis of 
survival data. Th is includes the non-parametric, semi-parametric and 
parametric survival models. In the past, non-parametric methods such 
as the log-rank test and the Kaplan-Meier (K-M) which requires no 
distributional assumption were used to estimate the survival function, 
compare the survival experiences of various groups and also estimate 
the survival probability in clinical set up [3]. Th e baseline hazard 
function incorporated in the Cox Proportional Hazards (CPH) model 
does not need to follow any probability distribution, making it a semi-
parametric survival model that is used for the study of time to event 
data [4,5]. Th e parametric survival models used in analyzing survival 
data give similar results but each has its own unique procedure usually 
under specifi c assumptions or no assumptions [3].

Globally, the prevalence of chronic diseases like Diabetes Mellitus 
(DM) is rising, and these conditions are linked to reduced quality 
of life and increased fi nancial burden. It is therefore crucial to 
develop preventive interventions for these conditions [6]. Along with 
infectious diseases and dietary issues, the burden of chronic diseases 
is increasing in developing countries. Although they account for a 
sizable amount of disease burden in African nations, chronic diseases 
are not adequately prevented or controlled [7]. Th ere are few risk 
factors that are connected to nutrition and lifestyle choices that are 
common to the three primary chronic diseases: cancer, diabetes, and 
cardiovascular disease. Th ese include conditions that are on the rise in 
many African nations, such as high blood pressure, high cholesterol, 
tobacco usage, excessive alcohol use, insuffi  cient consumption of 
fruits and vegetables, obesity, and being overweight or sedentary [8].

Empirically, Kassa TH [9] used Bayesian Accelerated Failure 
Time model and classical Accelerated Failure Time to identify the 
determinants risk factors of diabetes mellitus patients in Addis 

Ababa, Ethiopia and found that Body Mass Index, age category, types 
of diabetic disease, alcohol consumption, diabetic complication, 
cholesterol level, blood pressure, family history of diabetic, fasting 
blood sugar, density lipoprotein, comorbidity, triglyceride level and 
smoking habit are signifi cantly related to the survival time until death 
of diabetic patients. Lomo SI, et al. [10] used K-Meier curves and CPH 
regression to study the factors that aff ect the survival time of patients 
with type two DM in Indonesia and found that age, gender, diagnosis 
complication, comorbidity, intermittent blood glucose levels and 
treatment profi le are the factors eff ecting survival of patients with type 
II DM. Naim S, et al. [11] studied the survival time of DM patients with 
hemodialysis in Indonesia using K-M curves and CPH regression and 
found that age and gender has signifi cant eff ect on the survival DM 
patients. Uloko AE, et al. [12] study the prevalence and risk factors for 
diabetes mellitus in Nigeria via systematic review and meta-analysis 
and found that family history of DM, urban dwelling, unhealthy 
dietary habits, cigarette smoking, older age, physical inactivity 
and obesity were the risk factors for the pooled prevalence of DM. 
Hordofa SB, et al. [13] utilized multivariable CPH regression model to 
model the survival time of DM patients who were under follow-up at 
Nekemte referral Hospital, Ethiopia and found that body mass index, 
tobacco use, alcohol use, diabetic type diagnosed, blood pressure, and 
family history of diabetes mellitus were signifi cantly related to survival 
of diabetic patients. Adedotun AF, et al. [14] study the survival time 
distribution for DM patients at the National Hospital Abuja using 
CPH model and found that the distributions of survival time of 
patients diff er based on the four age categories. Th e study revealed 
further that there is no sex related multiplicative impact. Belay A, et 
al. [15] utilized K-M and CPH model to study the time to recovery of 
DM patients in Minlik Referral Hospital, Ethiopia and found that sex, 
Spdrt and regimen contribute signifi cantly to survival time to recovery 
of patients. Zhao Z, et al. [16] examine the survival of type 2 DM and 
the risk factors for mortality in one suburb cohort of Beijing, China 
using K-M analysis, and CPH model and found that older age, higher 
systolic blood pressure, lower body mass index and lower estimated 
glomerular fi ltration rate are signifi cant risk factors of mortality from 
type 2 diabetes. Badmus NI, et al. [17] examines and upgrades a two-
parameter double exponential distribution to a four-parameter beta 
double exponential distribution model by compounding the baseline 
distribution and beta link function to fi t and analyzed death-cases data 
resulted from COVID-19 in Africa and Non-African Countries. Th e 
proposed Beta Double Exponential Model (BDEM) proved fl exible 
and robust to fi ts than other distributions given the fact that the data is 
skewed. Similarly, Adeniran AT, et al. [18] invested an alternative and 
less rigorous method of deriving Gaussian probability distribution. 
Th e study found an approach independent of Lemas and Th eorems 
and free from rigorous mathematical analysis. 
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Most existing literatures on studies related to survival time of 
diabetes patients utilized K-M and Cox regression survival models 
and only few were conducted in Nigeria. In addition, in survival 
analysis, correlated survival data with potential censoring are 
frequently encountered. Th is comprises research with multiple focus 
groups in which participants are grouped according to clinical or 
other environmental characteristics that aff ect anticipated survival 
time. For data that occurs in such a setting, the traditional cox 
proportional hazards and AFT models that assume observations 
as independent are inadequate. For Instance, Vincent and Ismaila 
performed parametric survival analysis of Tuberculosis data collected 
from Federal Medical Centre Bida. Th ree AFT parametric survival 
(Exponential, Weibull and Log logistic) were fi tted. It was found that 
the Weibull model performed better. However, the study focused 
on studying the eff ect of the fi xed covariate on the survival time 
without considering the cluster-specifi c (Hospital) random eff ect 
on the survival time. Furthermore, Cox proportional Hazard and 
parametric proportional hazard model with random eff ect has been 
proposed to account for such dependencies. However, less attention 
has been giving to Accelerated failure time model by incorporating a 
random eff ect parameter that will account for the dependencies of the 
correlated data. In this study, we fi t an AFT model with random eff ect 
that will account for such dependencies using a diabetes mellitus data 
collected from three hospitals and the performance of the model was 
compared with the conventional AFT and cox proportional hazard 
model.

MATERIALS AND METHODS
Data on diabetes mellitus was collected from the three selected 

Hospitals for the period of fi ve years (2016-2020).

Techniques of data analysis 

Cox proportional hazards models with random eff ect: A semi-
parametric model (Cox-proportional Hazards model) with random 
eff ect can be formulated as:

    ( , , , )0 1 1 2 2t t exp z z zpi pi ji i                     (1)

Where  0  is the baseline hazard function, i  is a vector of fi xed 

eff ects corresponding to the covariates vectors     z andi j is the per-

subject random eff ect denotes the random eff ect associated with the 
jth cluster. Th e random eff ect can be thought of as an intercept that 
modifi es the linear predictors. Th is approach retains the full fl exibility 
of Cox regression while accommodating associations among 
individual response times. 

AFT parametric survival models with random eff ect parameter: 
In this study, we introduce a random eff ect component to the AFT 
model that accounts for lack of independencies by introducing a 
random eff ect component as:

log 'T X bi i i     
    

     (2)

Where  '  is a vector of unknown regression coeffi  cient, σ is a scale 
parameter,   is the intercept parameter, the i is the independently 
and identically distributed random errors, and the b is the cluster-
specifi c random eff ects which are assumed to be independent, 
identically distributed random variables with density function p(b). 
Here we have assumed that the random eff ect b follows gamma and 
inverse Gaussian distribution with mean zero and variance , as 

defi ned as in the density function below:
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Where Ã(.) is the gamma function, it corresponds to the gamma 

distribution ( , )Gam   with   fi xed to 1 for identifi ability and its 

variance is   the associate Laplace transform is: 

  1 , 0L



 





  
 
 
 

    
                (4)

Heterogeneity exists in the model if and only 0 
. So, the large values of  refl ect a greater degree 
of heterogeneity among groups and a stronger 
association within groups. Th e conditional 
survival and hazard function of the gamma frailty distribution is 
given by Gutierrez RG [19]:
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                (5)

where S(t) and h(t) are the survival and the 
hazard functions of the baseline distributions. 
According to Hougaard, kendall’s Tau measures the association 
between any two event times from the same cluster in the multivariate 
case in a Gamma distribution. Th e associations within group members 
are measured by Kendall’s, which is given by:

(0,1)
2








                (6)

Th e probability density function of an inverse Gaussian shared 
distributed random variable with parameter  > 0 is given by:
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For easy indemnifi cation, we assume X has 
expected value equal to one and variance . Th e 
Laplace transformation of the inverse Gaussian distribution is:
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For the inverse Gaussian frailty distribution, the conditional 
survival and hazard function is given by Gutierrez RG [19] in (9) and 
(10), respectively:
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and
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where S(t) and h(t) are the survival and the 
hazard functions of the baseline distributions. 
With multivariate data, an Inverse Gaussian distributed frailty yields 
a Kendall’s Tau given by:
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On the log survival time scale, the random eff ect can be thought 
of as an unobserved covariate that describes certain decreases or 
increases in event timings for distinct clusters. Within a cluster, all 
observations have a same unobserved random eff ect. Th e log of the 
survival time has a location-scale distribution in several survival 
time distributions, such as the Log-normal, Weibull, and Log-logistic 
distributions. Conditional on the random eff ects, the survivor 
function in (2) can be written in the form
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One assumption of the parametric model is that the survival time 
is assumed to follow a distribution with density function f(t). Th e AFT 
survival models considered in this study are: Exponential, Weibull, 
Log-Normal and Log-logistic survival distributions. 

The Weibull AFT model

Survival time t is a positive random variable with Weibull 
probability density function can be expressed as: 
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where,  > 0 and  > 0 and the baseline hazard function of the 
distribution becomes:
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Th is yield the following survivorship functions: 
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Depending on the value of , the hazard function can increase 
or decrease with increasing survival time. Hence, the Weibull model 
can yield an accelerated failure time model. Independent observations 
(t𝑖, 𝛿𝑖), 𝑖 ,...,𝑛 with survival time t𝑖 and censoring indicator 𝛿𝑖 which 
has value of one if ith observation is not censored and zero when the 
ith observation is censored and let  𝛼 be the unknown parameter. Th e 
likelihood function is:
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Re-parameterizing the Weibull distribution using λ= μ−α then 

 0h t   λ𝛼 t𝛼−1 will be the baseline hazard function. Now 

incorporate covariates 𝑋 in the hazard function, the Weibull 
regression models become:

  1; , exp( )h t t X         
                 (16)

Th e exponential AFT model: Th e time data is skewed to the 
right with exponential distribution, the time of survival for a set of 
covariates 𝑿, which is called, accelerated failure time is expressed as:

'exp( )T X    
     

             (17)

Where  is the error component.

Th e survivorship function may be obtained by expressing in terms 
of time as: 

(t, 𝑋, ) = ( -t 'X
e

) and the hazard function of the exponential 

regression model is 

h(t,𝑋,  )= 'X
e . 

Th e log-logistic AFT model: Multiple covariate log-logistic 
accelerated failure time may be expressed as:

'exp( )logT X    
    

                (18)

Where  is the scale parameter and   is the residual (unexplained) 
variation in the transformed survival time. Th e survivorship function 

for the model in (18) is     1
, , , [1 exp( )s t X z
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Where z is the standardized log-time outcome variable, that is; 
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Th e odds of a survival time of at least t are,
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assumes that the covariate is dichotomous and coded 0 or 1. Th e odds- 
ratio at time t from the ratio the odds of a survival time evaluated at 
x= 0 and x= 1 is:
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Th is is independent of time.

Th e lognormal AFT model: Th e log-normal model assumes that 
𝜀 ~N (0, 1). Let h(t) be the hazard function of 𝑇 for the model (11) 
when 𝛽=0 𝑖.e. 𝛽0 = 𝛽1 = ... = 𝛽𝑝 = 0. Then, h(t) has the following 
functional form:
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 is the cumulative distribution 

function of the standard normal distribution. Th e survival function 
(t/𝑋) at any covariate x can be expressed as:
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Th is is the fi nal survival model with intercept depending with t.

Method of estimation

According to Gutierrez RG [19], given the covariates information 
under assumptions of non-informative right -censoring and of 
independence between the censoring time and the survival time 
random variables, the marginal log-likelihood of the observed data 
is given by:
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Taking the logarithm, the marginal likelihood is:
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 is the number of event in the thi cluster, and 

  (.)
q

L  is the thq  derivative of the Laplace transform of the random 

eff ect distribution defi ned as:
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where φ represents a vector of parameters of the baseline hazard 
function,   the vector of regression coeffi  cients and 𝜃 the variance 
of the random effect. Estimates of  ,  , 𝜃 are obtained by 
maximizing the marginal log-likelihood of the above; this can be 

done if one is able to compute higher order derivatives   (.)
q

L   of the 

Laplace transform up to max{ , , }1q d ds  .

Model diagnostic

For the parametric regression problem, analogs of the semi 
parametric, residual plots can be made with a redefi nition of the 
various residuals to incorporate the parametric form of the baseline 
hazard rates (Klein and Moeschberger 2003). Th e fi rst of such residual 
is the Cox–Snell residual that provides a check of the overall fi t of the 
model. Th e Cox–Snell residual, rj, is defi ned by:

^
( | )r H T Xj j j

Where H is the cumulative hazard function of the fi tted model. 
If the model fi ts the data, then the  rj ’s should have a standard (𝜆=1) 
exponential distribution, so that a hazard plot of rj versus the Nelson-
Aalen estimator of the cumulative hazard of the  rj’s should be a 
straight line with slope 1. Th e best model will have the plots of the 
cumulative hazard close to the line of the residuals.

RESULTS AND DISCUSSION
Th e Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC) values for each model is presented 
in table 1. Th e cox proportional hazard model with random eff ect 
had the least AIC and BIC. Th is suggests its effi  ciency over the 
conventional cox proportional hazard model (without random eff ect). 
In addition, the performance of the AFT model with and without the 
random eff ect was also considered. Th e result in table 1 revealed that 
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the Weibull AFT with Inverse Gaussian random eff ect model has the 
least AIC and BIC indicating that it outperformed the exponential, 
log-logistics and lognormal models with and without the random 
eff ect when predicting the survival time of diabetes patient. Hence, 
the researcher based the interpretation of the results for AFT models 
on Weibull AFT with Inverse Gaussian random eff ect model. 

Table 2 presents the estimated parameters for CPHM with and 
without random eff ect. Th e model selection criterion indicated 
that the CPHM with random eff ect outperformed the conventional 
CPHM. Hence, the interpretation of the result was based on CPHM 
with random eff ect. The random effect in the cox proportional 

Table 1: AIC and BIC for diabetes data.

No RE GAMMA RE Inverse Gaussian RE

Model AIC BIC AIC BIC AIC BIC

CPH 2578.9 2691.8 2571.5 2681.6

Exponential 1005.1 1131.6 1007.1 1138.1 1007.1 1138.1

Weibull 1111.7 1242.7 864.5 999.9 864.3 999.8

Lognormal 1054.1 1185.1 1056.1 1191.6 1056.1 1191.6

Log logistic 1055.7 1186.8 1057.7 1193.2 1057.7 1193.2

Source: Computed using STATA.

Table 2: Cox proportional Hazard models for diabetes data.

CPH (No RE) CPH (With RE)

Variable/Category B HR S. E p-value B HR S. E p-value

Gender

Male Ref

Female -.1475 0.8629 0.1495 0.395 -.1253 0.8822 0.1533 0.471

Residential Area

Urban Ref

Peri-Urban .7682 2.1559 0.6416 0.010 .7864 2.1955 0.6534 0.008

Rural .4965 1.6429 0.3771 0.031 .4901 1.6325 0.3759 0.033

Education

Tertiary Ref

Secondary .9285 2.5308 0.7165 0.001 .9448 2.5722 0.7278 0.001

Primary .3403 1.4054 0.2843 0.092 .3445 1.4113 0.2864 0.050

Non-Formal .4112 1.5087 0.4836 0.199 .4431 1.5576 0.5002 0.168

Occupation

Unemployed Ref

Employed -.2285 0.7957 0.2523 0.471 -.2285 0.7957 0.2521 0.471

Trading -.1064 0.8991 0.3218 0.766 -.1300 0.8781 0.3138 0.716

Farming -.2022 0.8169 0.2154 0.443 -.2064 0.8135 0.2140 0.433

Retire -.4868 0.6146 0.2037 0.142 -.5073 0.6021 0.1998 0.126

Smoking Status

Non-Smoker Ref

Smoker .5327 1.7035 0.6650 0.172 .4565 1.5785 0.6248 0.249

Drinking Status

Non-Drunker Ref

Drunker .6467 1.9093 0.3235 0.000 .6666 1.9477 0.3321 0.000

Exercise

Regular Ref

Sometimes .1634 1.1775 0.4725 0.684 .1297 1.1385 0.4574 0.747

Not at all .1733 1.1892 0.1866 0.269 .1431 1.1538 0.1836 0.368

Sal

Salt Intake

Not at all Ref

As in food -.1557 0.8558 0.1886 0.480 -.1536 0.8576 0.1896 0.487

At table .2209 1.2472 0.3196 0.389 .2258 1.2533 0.3207 0.377

Age

Below 50 Ref

50 – 59 -.0551 0.9464 0.1747 0.765 -.0638 0.9382 0.1730 0.729
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hazard model is assumed to follow the Gamma distribution with 
mean 1 and variance equal to theta (𝜃). The heterogeneity in the 
population of the study which is used as a clusters as estimated 
by the selected model is 𝜃 = 0.0100 and the dependence within 
the clusters (hospitals) is measured by Kendall’s tau is 𝜏 = 
0.0050. A variance of zero (𝜃 = 0) indicate that the random effect 
component does not contribute to the model. A likelihood ratio 
test for the hypothesis 𝜃 = 0 indicates a chi-square 𝜒2 value of 
0.26 resulting to an insigniϐicant p-value of 0.306. Th e implication 
of this fi ndings is that the random eff ect parameter had insignifi cant 
contribution to the model.

Th e categorical variables: area of residence (peri-urban and 
rural residence), education level (primary and secondary), drinking 
status and BMI (Obsessed) signifi cantly contributed to the hazard 
of diabetes mellitus. Th e estimated values (B = 0.7804, HR = 2.1955, 
S.E. = 0.6534, p = 0.008 and B = 0.4901, HR = 1.6325, S.E. = 0.3759, 
p = 0.033) for peri-urban and rural residence indicates that peri-
urban and rural residence had a higher risk of dying with diabetes 
mellitus by a factor 0.1955 (19.6%) and 0.6325 (63.25%) respectively 
times higher than urban residence when other covariates are held 
constant. Similarly, the estimated values (B = 0.3445, HR = 2.4113, 
S.E. = 0.2864, p = 0.050 and B = 0.9448, HR = 2.5576, S.E. = 0.7278, 
p = 0.001) indicated that diabetes mellitus patients with primary 
and secondary school education level had higher risk of dying from 
diabetes by a factor 0.4223 (41.1%) and 0.5576 (55.8%) times higher 
as compared to those with tertiary level of education respectively. 
Furthermore, the estimated values (B = 0.6666, HR = 1.9477, S.E. = 
0.3321, p = 0.000) suggested that diabetes mellitus patients that are 
drunker had a higher risk of dying from diabetes by a factor 0.9477 
(94.8%) times higher as compared to those that do not drink. Th e 
estimated values (B = 0.9289, HR = 2.5317, S.E. = 0.1833, p = 0.045) 
revealed that diabetes patient that are obese had a higher risk of dying 

with diabetes by a factor 0.1833 (18.3%) as compared with those that 
have normal weight. However, gender, occupation, smoking status, 
exercise, salt intake and age were insignifi cant contributing factors. 

Th e results of data analysis based on Exponential, Weibull, Log-
normal and Log-logistic AFT models with and without random eff ect 
using AFT survival analysis were presented in table 3. Th e model 
selection criterion presented in table 1 indicates that Weibull with 
Inverse Gaussian Random eff ect distribution which has the minimum 
AIC and BIC values of 864.3 and 999.8 appears to be appropriate 
model as compared with other models considered in this study. Th is 
implies that Weibull inverse Gaussian random eff ect AFT model is 
more effi  cient model to describe determinant factors of time-to-
event of diabetes mellitus patient. From table 3, the random effect 
parameter in this model is assumed to follow an inverse Gaussian 
distribution with mean 1 and variance equal to theta (𝜃). The 
heterogeneity in the population of the hospitals which were used 
as a clusters as estimated by the selected model is 𝜃 = 0.0543 and 
the dependency within the clusters (hospitals) is measured by 
Kendall’s tau is 𝜏 = 0.0264. A variance of zero (𝜃 = 0) indicate that 
the random effect component does not contribute to the model. 
A likelihood ratio test for the hypothesis 𝜃 = 0 was presented 
at the bottom of table 3 and indicates a chi-square 𝜒2 value of 
4.08 which resulted to a highly signiϐicant p-value of 0.022. The 
implication of this ϐindings is that, the random effect component 
had signiϐicant contribution to the model. The estimated Kendall’s 
tau (𝜏 = 0.0264) shows that there is weak dependency within the 
cluster for Weibull inverse Gaussian random eff ect model. Th e 
estimate of shape parameter in the Weibull inverse Gaussian random 
eff ect AFT model is u = 2.0409. Th is value shows the shape of hazard 
function is unimodal because the value is greater than unity i.e., it 
increases up to some time and then decreases. Th e estimated values, 
standard error, Time Ratio (TR), estimated parameters of baseline 

60 – 69 .0527 1.0541 0.2377 0.815 .0508 1.0521 0.2376 0.822

Above 70 .1280 1.1366 0.3185 0.648 .1104 1.1167 0.3133 0.694

BMI

Normal Ref

Underweight .2079 1.2311 0.2445 0.295 .2226 1.2493 0.2483 0.263

Overweight .1239 1.1319 0.1521 0.472 .1131 1.1197 0.1539 0.512

Obsessed .9334 2.5431 0.1825 0.044 .9289 2.5317 0.1833 0.045

SBP

Low Ref

Normal -.0803 0.9228 0.1925 0.100 -.0946 0.9097 0.1903 0.650

Pre-hypertension -.0056 0.9944 0.2925 0.523 -.0622 0.9397 0.1962 0.766

High -.0125 0.9876 0.2195 0.953 .0103 1.0104 0.2237 0.963

DBP

Low Ref

Normal -1.7142 0.1801 0.1738 0.101 -.5090 0.6011 0.3151 0.100

Pre-hypertension -.1135 0.8927 0.1586 0.523 -.1179 0.8888 0.1583 0.508

High -.0484 0.9528 0.7771 0.953 -.0743 0.9284 0.7578 0.927

θ 0.0100 0.0247

 0.0050

Likelihood ratio ( ):  0.26; prob. = 0.306
Source: Computed using STATA.
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Table 3: Results of Weibull AFT models. 

Weibull (No RE) Weibull (Gamma) Weibull (Inverse Gaussian)

Variable/Category B TR S. E p-value B TR S. E p-value B TR S. E p-value

Intercept 1.3731 3.9476 0.1616 0.000 2.3755 10.7564 0.2414 0.000 2.3753 10.7542 0.2414 0.000

Gender

Male Ref

Female 0.0736 1.0764 0.0595 0.216 0.0203 1.0205 0.08854 0.819 0.0191 1.0193 0.0884 0.829

Residential Area

Urban Ref

Peri-Urban 0.1611 1.1748 0.1011 0.111 -0.4491 .6382 0.1485 0.002 -0.4502 .6375 0.1484 0.002

Rural 0.0817 1.0851 0.0647 0.207 -0.2501 .7787 0.1150 0.030 -0.2498 .7790 0.1149 0.030

Education

Tertiary Ref

Primary 0.0186 1.0188 0.06387 0.771 -0.1862 .8301 0.1022 0.069 -0.1863 .8300 0.1022 0.048

Secondary 0.0800 1.0833 0.1151 0.487 -0.5263 .5908 0.1406 0.000 -0.5270 .5904 0.1405 0.000

Non-formal 0.2442 1.2766 0.1164 0.036 -0.2519 .7773 0.1627 0.122 -0.2534 .7762 0.1625 0.119

Occupation

Unemployed Ref

Employed 0.1251 1.1333 0.1124 0.266 0.1255 1.1337 0.1585 0.429 0.1257 1.1339 0.1583 0.427

Trading 0.1897 1.2089 0.1273 0.136 0.1367 1.1465 0.1795 0.446 0.1377 1.1476 0.1793 0.442

Farming 0.1068 1.1127 0.0968 0.270 0.9983 2.7137 0.1322 0.450 0.1002 1.1054 0.1320 0.448

Retire 0.0858 1.0896 0.1116 0.442 0.2296 1.2581 0.1670 0.169 0.2307 1.2595 0.1667 0.166

Smoking

Non-Smoker Ref

Smoker -0.1138 .8924 0.1404 0.417 -0.1716 .8423 0.2051 0.408 -0.1155 .8909 0.2050 0.415

Drinking Status

Non-Drunker Ref

Drunker 0.0977 1.1026 0.0542 0.070 -0.3564 .7002 0.0854 0.000 -0.3573 .6996 0.0854 0.000

Exercise

Regular Ref

Sometimes -0.0680 .9343 0.1170 0.561 -0.1173 .8893 0.1995 0.557 -0.1155 .8909 0.1994 0.563

Not at all -0.0345 .9661 0.0613 0.574 -0.0470 .9541 0.08202 0.567 -0.0452 .9558 0.0819 0.582

Salt Intake

Not at all Ref

As in food -0.0401 .9607 0.0715 0.575 0.0227 1.0230 0.1093 0.835 0.0229 1.0232 0.1994 0.834

At table 0.1441 1.1550 0.09031 0.111 -0.1439 .8660 0.1271 0.235 -0.1441 .8658 0.0820 0.256

Age

Below 50 Ref

50 – 59 -0.2135 .8078 0.0721 0.004 0.0358 1.0364 0.0912 0.694 0.0362 1.0369 0.0911 0.691

60 – 69 -0.1097 .8961 0.0873 0.209 -0.0617 .9402 0.1135 0.587 -0.0617 .9402 0.1134 0.586

Above 70 -0.1993 .8193 0.1041 0.055 -0.0662 .9359 0.1421 0.641 -0.0651 .9370 0.1420 0.647

BMI

Norma weight Ref

Under weight 0.02884 1.0293 0.0788 0.714 -0.1634 .8493 0.0997 0.101 -0.1644 .8484 0.0996 0.049

Overweight -0.1127 .8934 0.06084 0.064 -0.0413 .9595 0.0852 0.628 -0.0418 .9591 0.0852 0.628

Obsessed -0.1305 .8777 0.1033 0.206 0.4501 1.5685 0.2317 0.052 -0.4496 0.6379 0.2314 0.032

SBP

Low Ref
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Normal 0.0021 1.0021 0.07262 0.977 0.0618 1.0637 0.1056 0.558 0.0605 1.0624 0.1055 0.566

Pre-hypertension 0.1370 1.1468 0.0800 0.087 -0.0434 .9575 0.1093 0.692 -0.0446 .9564 0.1092 0.684

High 0.0435 1.0445 0.0875 0.076 0.0423 1.0432 0.2011 0.165 -0.0425 .9584 0.2016 0.921

DBP

Low Ref

Normal -0.1630 .8496 0.1446 0.260 9.8822 19578.7486 5.0770 0.998 0.4674 1.5958 0.5261 0.998

Pre-hypertension -0.0325 .9680 0.0626 0.603 0.07765 1.0807 0.08934 0.385 0.07791 1.0810 0.0893 0.383

High -0.3894 .6775 0.3726 0.296 0.2033 1.2254 0.4014 0.618 0.2041 1.2264 0.4010 0.611

 2.0387 0.06916 2.0393 2.0409

 0.4905 0.01664 0.4904 0.4900

θ 0.0524 0.0552 0.0543 0.0574

 0.0255 0.0264

Likelihood ratio ( θ): x2 = 3.89; prob. =0.024 Likelihood ratio ( θ): x2 =  4.08; prob. = 0.022

distributions and random eff ect parameter (θ) were presented in 
table 3. Th e Weibull with inverse Gaussian random eff ect distribution 
shows that area of residence, level of education, drinking status and 
BMI are statistically signifi cant (p < 0.05) risk factors for diabetes 
patient. Whereas the gender, occupation, smoking status, exercise, salt 
intake, age, SBP and DBP were found to be statistically insignifi cant 
factor for diabetes patient. Th e diabetes patient that reside in peri-
urban and rural area had lesser survival time by a factor 0.6375 and 
0.7790 respectively than those that reside in urban area (TR < 1). Th e 
result of the analysis also showed that diabetes patient with primary 
and secondary level of education had lesser survival time by a factor 
0.8300 and 0.5904 as compared with those that had tertiary level of 
education (TR < 1). Furthermore, it was discovered that diabetes 
patient with drinking status had lesser survival time by a factor 0.6996 
(TR < 1) as compared to those that do not drink. In addition, diabetes 
patient with underweight and obese had lesser survival time by a 
factor 0.8484 and 0.6379 respectively (TR < 1) as compared to those 
with normal weight. Th is implies that BMI, area of residence, level 
of education and drinking status are the risk factors of diabetes. In 
addition, the result of the selected model revealed that BMI, area of 
residence, level of education and drinking status are the risk factors 
of diabetes.

Checking model adequacy of parametric baselines using 
Cox-Snell residuals plots

Th e Cox–Snell residuals are one way to investigate how well 
the model fi ts the data. Th e plots for fi tted models of residuals for 
the selected models Weibull AFT with Inverse Gaussian Random 
eff ect for Diabetes data set via maximum likelihood estimation with 
cumulative hazard functions are given in fi gure 1. If the model fi ts the 
data, the plot of cumulative hazard function of residuals against Cox–
Snell residuals should be approximately follow a straight line. Th e plot 
for both models makes straight lines through the origin suggesting 
that the selected models are appropriate for time-to-Event of Diabetes 
Data set respectively.

CONCLUSION
Th is study aimed at comparing the performance of parametric 

and semi-parametric survival models with application to clinical data 
sets. Specifi cally, the study compared the performance of conventional 
semi-parametric model with extended semi-parametric model 
(CPHM with random eff ect) and, conventional AFT models with the 

0
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0 2 4 6
Cox-Snell residual

H Cox-Snell residual

Figure 1:AFT Weibull model with inverse Gaussian RE distribution for 
diabetes data sets.

extended AFT models (with random eff ect). Finally, the performance 
of semi-parametric and parametric model with and without random 
eff ect were compared. Based on the results of the analysis as presented 
in the previous section, it was concluded that the Weibull AFT model 
with inverse Gaussian random eff ect distribution performed better 
than the other models considered in this study.

REFERENCES
1.  Collett D. Modeling survival data in medical research. Boca Raton Florida: 

Chapman & Hall/CRC; 2003.

2. Xin J. Frailty models for the between center variation in survival following 
rectum cancer diagnosis. Masters Dissertation, Ghent University, Belgium. 
2009.

3. Shankar PK, Screenivas V, Subrat KA. Comparison of cox proportional 
hazards model and lognormal accelerated failure time model: Application in 
time to event analysis of acute liver failure patients in India. Nepalese Journal 
of Statistics. 2019;3:21-40.

4. Cox DR. Regression models and life tables (with discussion). Journal of the 
Royal Statistical Society. 1972;187-220.

5. Cox DR. Partial likelihood. Biometrika. 1975;62:269-276.

6. Lahham HNM. Cardiovascular diseases and risk factors among diabetic 
patients. Nablus District, West Bank, Palestine. 2009.

7. WHO & AFRO. Cardiovascular diseases in African region: Current situation 
and perspectives report of the regional director. Fifty Fifth Sessions. Maputo, 
Mozambique. 2005.

8. Steyn K, Sliwa K, Hawken S, Commerford P, Damasceno A, Ounpuu S, Yusuf 
S. Risk factors associated with myocardial infarction in Africa. The inter heart 
Africa study. Circulation. 2005;112:3554-3561.



Scientifi c Journal of Biomedical Engineering & Biomedical Science

SCIRES Literature - Volume 3 Issue 1 - www.scireslit.com Page -010

9. Kassa TH. Bayesian survival analysis of diabetes mellitus patients:  A case 
study in tikur anbessa specialized hospital, Addis Ababa, Ethiopia. Journal of 
Reliability and Statistical Studies. 2018;37-56.

10. Lomo SI, Sugiyarto S, Darmawan E. A Survival analysis with cox regression 
interaction model of type II diabetes mellitus in Indonesian. Journal 
Kedokteran dan Kesehatan. 2021;15(1):81-90. 

11. Naim S, Mahmudah M. Survival time of diabetes mellitus patients with 
hemodialysis: A study using survival analysis. Acta Medica Iranica. 
2022;60(2):115-119.

12. Uloko AE, Musa BM, Ramalan MA, Gezawa ID, Puepet FH, Uloko AT, Sada 
KB. Prevalence and risk factors for diabetes mellitus in Nigeria: A systematic 
review and meta-analysis. Diabetes Therapy. 2018;9(3):1307-1316.

13. Hordofa SB, Debelo O. Statistical analysis of the survival of patients with 
diabetes mellitus: A case study at Nekemte Hospital, Wollega, Ethiopia. 
American Journal of Biometric and Biostatistics. 2020;4(1):6-12.

14. Adedotun AF, Odusanya OA, Okagbue HI, Ogundile OP. Analysis of reported 
cases of diabetes disease in Nigeria: A survival analysis approach. International 
Journal of Sustainable Development and Planning. 2022;17(2):643-647.

15. Belay A, Derebew B, Abebaw S. Survival analysis on time-to-recovery of 
diabetic patients at Minlik Referral Hospital, Ethiopia: Retrospective cohort 
study. Research square. 2021;1-25.

16. Zhao Z, Huo L, Wang L, Wang L, Fu Z, Li Y, Wu X. Survival of Chinese people 
with type 2 diabetes and diabetic kidney disease: A cohort of 12-year follow-
up. BMC Public Health. 2019;19(1):1-8.

17. Badmus NI, Olanrewaju F, Adeniran AT. Modeling COVID-19 pandemic data 
with beta double exponential model. Asian journal of research in infectious 
diseases. 2020;5(6):66-79.

18. Adeniran AT, Faweya O, Ogunlade TO, Balogun KO. Derivation of 
Gaussian probability distribution: A new approach. Applied Mathematics. 
2020;11(6):436.

19. Gutierrez RG. Parametric frailty and shared frailty survival models. Stata 
Journal. 2002;2(1):22-44. 


