
Original Article

An Enhanced Blowfi sh Algorithm with Reduced
Computational Speed -
Gbolagade Morufat Damola1*, Rasheed Jimoh2 and Oluwakemi Abikoye2

1Department of Computer Science, Al-Hikmah University, Ilorin, Nigeria
2Department of Computer science, University of Ilorin, Nigeria

*Address for Correspondence: Gbolagade Morufat Damola, Department of Computer Science, Al-Hikmah
University, Ilorin, Nigeria, Tel: +234-803-234-3270; E-mail:

Submitted: 16 February 2022; Approved: 12 May 2022; Published: 13 May 2021

Cite this article: Damola GM, Jimoh R, Abikoye O. An Enhanced Blowfi sh Algorithm with Reduced
Computational Speed. American J Biom Biostat. 2022 May 13;5(1): 001-07.

Copyright: © 2022 Damola GM, et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

American Journal of
Biometrics & Biostatistics

American Journal of Biometrics & Biostatistics

SCIRES Literature - Volume 5 Issue 1 - www.scireslit.com Page - 002

INTRODUCTION
Since the Internet and communication networks are rapidly

growing, the security and privacy of users are challenged with great
feelings of vulnerability. In contrast, Internet cryptology is the defence
technique or anonymity of writing or reading and delivering messages
in the encrypted form [1,2]. Many cryptographic algorithms have
been proposed and applied to provide consumers with safe internet-
based transactions. However, with society’s hacking rate increasing, it
seems additional study eff orts are needed. Th e latest rampant hacking
encounters have made existing cryptographic algorithms no longer
secure [3-7]. Th e measurement of encryption assumes a vital role
in protecting knowledge as it is substituted or shared. Th ere are two
styles of encryption algorithms: symmetric key encryption algorithms
and key encryption algorithms. While asymmetric, Symmetric Key
Encryption or secret key encryption algorithm requires two keys, uses
the same key to encrypt and decrypt.

Literature review

[8,9] postulated that Blowfi sh is a vector. Th e algorithm is divided
into two parts: critical expansion and data encryption. A 448-bit
key is extended into 4168-byte arrays by crucial development. Th e
data were encrypted using Feistel’s 16-round network. Each round
includes key-dependent permutation as well as data-dependent
substitution. Both 32-bit XORs and attaches. Th e only extras are four
round-indexed data lookups. Using a 64-bit block size (compared to,
say, AES’ 128-bit block size) makes it vulnerable to attacks, especially
in contexts like HTTPS [10]. Because of its limited block size, it was
not advised to encrypt 4GB of data.

According to John Kelsey, an attack developed by the researcher
could break 3-round Blowfi sh, whereas he could not expand it. When
Fis is known, diff erential cryptanalysis can reveal all other keys with
248 plain texts selected against the number of rounds when restricted
to round eight. However, it is exceedingly diffi cult for Florence’s
more signifi cant number. Despite that, blowfi sh are extraordinarily
known as the best block cipher in terms of speed; increasing the
number of bits will enhance the performance [11-14]. Two fi sh
encryption algorithm based on Blowfi sh takes128 bits block size as
input was admitted and seen as the best algorithm compared with
AES [15,16]. It generates high-security strength but has low speed

as compared with Blowfi sh. Two fi sh is regarded as a well-known
usage compared with Blowfi sh [17]. Blowfi sh has two parts critical
expansion and data encryption. Th e critical expansion parts applied
XOR to the variable key length. Th e plain text is also used to produce
subkeys in which four critical independent s-boxes are generated.
Every round needs four KB, making the algorithm unsuitable for
several devices with small memory, such as smart cards and phones.
Using the said techniques, computing subkeys in each round fallout
to a slower operation, making it effi cient when using an application
that needs changing secret key regularly [18,19]. At the same time,
three possible simplifi cations recommended by [20-22] aimed at
increasing the security strength without aff ecting the execution
speed. Most researchers concentrate more on reducing execution
time by improving Blowfi sh’s key generation to produce subkeys
[22]. However, the outcomes of the researchers were able to achieve a
slight time reduction in time complexity which may harm the security
strength. Some researchers have proposed the extension of the block
size of Blowfi sh to 128- bit [23]. However, the fi ndings suggest that
additional study is needed to boost speed while complying with the
security strength requirement. Th is research presents a modifi ed
blowfi sh approach with the fewest possible iterations.

Th e following objectives were explored: to compare the
performance of the modifi ed Blowfi sh, Blowfi sh, and Twofi sh
techniques in terms of encryption. From there, a modifi ed blowfi sh
method is presented, which uses a 128-bit block size and a modifi ed
fi estal iterative structure to improve performance and a new F-function
to improve security. Decryption speed; and compare the performance
of the modifi ed algorithm and Blowfi sh in terms of security utilizing
the avalanche eff ect. Th is research will modify Blowfi sh to employ a
128-bit block size and a 128-bit key as established in Figure 1. Th e
increase in block size would allow for fi le encryption with a lower risk
of duplicate blocks. Th e original Blowfi sh structure will be retained,
but the number of boxes will be reduced from four to two to reduce
memory consumption.

Th e algorithm shows:

1. Blowfi sh’s 16 rounds.

2. Th e input is a 64-bit element, x.

3. Divide x into two 32-bit halves.

 ABSTRACT
Cryptography guarantees security in communication through encryption. By superimposing shares in pairs, it is possible to identify

any instances of fraud. The hidden picture is retrieved, and its contrast has been multiplied by (\frac {m}{m+1}\) to return to the original
contrast. Contrast restored is (\frac {1}/{2(m + 1)}). Unlike normal (k,n)-VC approaches, these schemes do not address their fl aws. They
need more shares, bigger pixels, or lower contrast. This is because these schemes do not address their fl aws. The experimental results
show that the concealed quality of the picture corresponds to expectations [1] in a paper that points out that presently, data exchange is
a need for people to communicate. When sending data on the Internet, various security risks must be addressed. There are three parts
to the research. The fi rst part, an algorithm of 9 × 6 matrices for fair play, is a new proposal for gameplay called the RSA algorithm. A
combination of algorithms strengthens symmetric and asymmetric algorithms despite producing good results in various parameters, such
as message strength and key strength. This paper proposed modifi ed Blowfi sh encryption that uses 128-bit block size,128-bit key, and a
new F- function formula was derived.The modifi cation was also done on the original structure using the # function to enhance the security
strength to replace XOR. Time and avalanche were used to assess the algorithm’s performance. Due to diff erence in block sizes, the
modifi ed Blowfi sh is slower with average key, encryption, and decryption times of 26.99 ms, 1651.83 ms, and 2765.04 ms, respectively,
compared to Blowfi sh with 21.65 ms, 1297.76 ms, and 2176.59 ms. Applying a 128-bit block size enhances security by reducing the
chances of having duplicate blocks that may reveal the information. With encryption and decryption average times of 2418.08 ms and
4002.70 ms, respectively, the improved Blowfi sh is quicker than Twofi sh. The diff erent derivations enhanced the modifi ed Blowfi sh’s
avalanche. Blowfi sh had a 95.14 percent success rate, whereas modifi ed Blowfi sh had a 99 percent success rate.

Keywords: Algorithm; Avalanche; Blowfi sh; Modify blowfi sh; Security

American Journal of Biometrics & Biostatistics

SCIRES Literature - Volume 5 Issue 1 - www.scireslit.com Page - 003

4. Th en, for I = 1-16:

xL = xL Pi XOR

F(xL) XOR XR

5. Swap XL/XR

6. Aft er round sixteenth, exchange xL and xR to reverse the
previous swap.

xR = xR XOR P17 and xL = xL XOR P18.

7. Recombine XL and XR to get the ciphertext.

8. Decryption is the same as encryption, except that P1, P2,..., P18
are used in reverse sequence.

9. Blowfi sh implementations requiring the highest speeds can
unroll the loop and ensure all subkeys are placed in a cache.

Summary of related works

[10,11] stated that various applications, such as multimedia
transmission and data storage use VC-based security systems. It takes
one encrypted picture and makes it seem to be several unsecured
pictures via a process known as “printing transparencies.” It is
pretty simple to decode the secret because it does not necessitate
any cryptography understanding of computation. However, the
researchers found that fraudulent shareholders are highly likely
to present falsifi ed shares during the covert reconstruction phase,
causing signifi cant harm to honest shareholders. Th e researchers
[12] [24-26] proposed a secure method for verifying cheating shares
to accomplish a fair picture secret reconstruction. It was created to
allow the original shareholders of the XOR-based VC method to
exchange a verifi cation picture. Th e pixel expansion is raised by one
to accomplish the verifi cation function.

Th e algorithm depended on the algorithm, and a more complex
structure resulted in poor performance time. It was recommended
that more research be done on the blowfi sh algorithm.

METHODOLOGY
Th e suggested approach is a resilient secret-key block cipher that

boosts reliability by boosting intakes and altering the F-function
of the present Blowfi sh. Th is research enhances effi ciency without
compromising the established Blowfi sh algorithm’s memory,
security, and simplicity.

Enhanced blowfi sh iteration process

A new way to manipulate bits has been shown that uses a diff erent
truth table to manipulate bits that work on 4-states to make intruders’
encryption methods more secure and keyspace bigger (0,1,2,3). Only
the bits (0,1) are used in (XOR). Th e # symbol was used to refer to the
operator in the truth tables seen in tables 1-4.

Th e new operation requires three inputs. A cross-point is defi ned
as the intersection of two rows and columns in a table.

Th e proposed update utilizes the current procedure hash function
(#) introduced in the original Blowfi sh algorithm during each round.
An additional key is needed to apply this operation on both sides, a
binary key that transforms into a 4-state key. Th e fi rst K1 key will be
used with XL and Pi to produce the next.

She left part in each round of the initial Blowfi sh. Th e second key
will use F(XL) and XR to create the correct position. All three inputs
can be transformed from 64 bits to 32 digits, each of which can be one
of four states (0, 1, 2, 3), i.e., converted to the corresponding decimal
digits.

Figure 1: Existing blowfi sh Iteration process algorithm source [23,24].

Table: 1

#0 0 1 2 3

 0 3 2 1 0

1 2 3 0 1

2 3 0 1 2

3 0 1 2 3

Table: 2

#1 0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

Table: 3

#1 0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

Table: 4

#3 0 1 2 3

0 1 0 3 2

1 0 1 2 3

2 3 2 1 0

3 2 3 0 1

American Journal of Biometrics & Biostatistics

SCIRES Literature - Volume 5 Issue 1 - www.scireslit.com Page - 004

Th e inputs should be ordered in this sequence to match the result
in the table above.

Input 1: Input key/ password supplied by the user

Input 2: P-Array, gotten from the hexadecimal binary of pi

Input 3: half of the input 128 bits, i.e., XL

Th e new operation requires three inputs. Th e fi rst input specifi es
the table number; the other two inputs provide the row and column
numbers in the chosen table where the cross-point provides the
result. An example of service is seen below:

Input 1: 0 1 3 1 2 3 1

Input 2: 3 2 1 0 1 1

Input 3: 1 0 0 2 1 2

———————————————-

Result: 1 0 0 1 2 3 2

It takes the ORDER KI, PI, XL

Where K1=b2 bit key, Pi=p array,xl=fi rst 32bit input from the left

XL = 0010101001010101110101001011110111 000010101001010
101110101001011110111 0 0

Moreover, the value of Pi-1, which represent here the fi rst key,
could be the binary number:

Pi = 10010100011101010101001001110100110 100101000111010
101010010011101001101

and the entered key, which represent the second key in the applied
operation, the binary number:

K1=111010100101010110101110101010010111 11101010010101
0110101110101010010111

Firstly, the three entered 32-bits binary numbers should be
converted to a 4-states 16-digit numbers.

Pi ‘ = 2 1 1 0 1 3 1 1 1 1 0 2 1 3 1 0 3 1 2 1 1 0 1 3 1 1 1 1 0 2 1 3 1 0 3 1

xL ‘ = 0 2 2 2 1 1 1 1 3 1 1 0 2 3 3 1 3 0 0 2 2 2 1 1 1 1 3 1 1 0 2 3 3
1 3 0

K1’ = 3 2 2 2 1 1 1 1 2 2 3 2 2 2 2 1 1 3 3 2 2 2 1 1 1 1 2 2 3 2 2 2 2 1 1 3

Th en the # operation applied according to table 3,4, 5, and 6, the
result of Encryption will be:

New XL = 3 1 1 0 0 2 0 0 0 2 0 0 1 2 0 1 0 0 3 1 1 0 0 2 0 0 0 2 0 0
1 2 0 1 0 0

If we reverse the whole operation, we will get the initial, which is
the result of the decryption operation that equal to the original data:

K1’ = 3 2 2 2 1 1 1 1 2 2 3 2 2 2 2 1 1 3 3 2 2 2 1 1 1 1 2 2 3 2 2 2 2 1 1 3

Pi’ = 2 1 1 0 1 3 1 1 1 1 0 2 1 3 1 0 3 1 2 1 1 0 1 3 1 1 1 1 0 2 1 3 1 0 3 1

New XL = 3 1 1 0 0 2 0 0 0 2 0 0 1 2 0 1 0 0 3 1 1 0 0 2 0 0 0 2 0 0
1 2 0 1 0 0

XL = 0 2 2 2 1 1 1 1 3 1 1 0 2 3 3 1 3 0 0 2 2 2 1 1 1 1 3 1 1 0 2 3 3 1 3 0

Existing F- function

Existing function F is as follows:-

Divide XL into four eight-bit quarters: a, b, c, and d

S1a= fi rst S BOX WITH 8 BITS,S2b = second SBOX WITH 8
BITS,S3C = THIRD S BOX WITH 8 BITS AND S4d = fourth S BOX
WITH 8 BITS

 32 32 (1, 2, 2 3) 4 2 , , F X S S mod XOR S S moda cL b d (1)

Enhance function F2

Without violating the security requirements, the Blowfi sh
function F was modifi ed as follows and shown in Figure 3:

 64 (, 2)1 1 2 3 4F xL S xor S S mod xor S
 (2)

 ()5 72 6 8F xL S xor S xorS xor S
 (3)

 ,1 2F xL F xL F xL

 (4)

Figure 2: Existing blowfi sh function F [23-26].

16bit
 16bit 16bit 16bit

64 -bit XL Block

S1, S5 S4, S8 S3, S7 S2, S6

64bit 64bit

64bit

64bi
t

64bit

64bit

M

F(XL)

Figure 3: Modifi ed blowfi sh function F.

American Journal of Biometrics & Biostatistics

SCIRES Literature - Volume 5 Issue 1 - www.scireslit.com Page - 005

Generating F functions F1 and F2, each with four S –boxes,
concatenating the F1 and F2 gives the fi nal F(xL).

Th is modifi cation upgrades the original 64 bits Function F to 128
bits Function F, reducing time.

Fiestal structure

In order to improve the security of the blowfi sh method, two
function keys, K1 and K2, are utilized, which the users may use to
substitute XOR and provide to the # function. Th e input size is also
increased to 128 bits, making it possible to protect data in a short

amount of time.

Signifi cance of enhancing blowfi sh

1. Th e processing time of an algorithm is decreased when
compared with an original algorithm.

2. Here 1 - ADDITION and 4 XOR are used, but the original
F1- function uses 2- addition and 1XOR

3. It takes 128 bits as the input intake, which reduces the number
of iterations when large fi les are encrypted.

4. Th e #- function to replace XOR in the fi estal process makes it
diffi cult to attack.

5. It improves the security standard.

6. It is complicated for the attackers to realize that the
F-functions is modifi ed, and chances of the attacker are slim
when compared to the original Blowfi sh.

7. 8 S- boxes were generated with Two F functions which are
hard to cryptanalysis.

8. Th e avalanche eff ect states that a minor change in the plaintext
(or key) should signifi cantly change the ciphertext.

Avalanche Eff ect = (Number of Changed bit in ciphertext) /
(Number of bits in ciphertext).

A good cipher should always satisfy an avalanche > 50%.

SIMULATED ANALYSIS OF BLOWFISH
ALGORITHM

 (Table 1) reveals that Modifi ed Blowfi sh Algorithm (MBA) has
an average of 22.10 ms while Blowfi sh Algorithm (BA) is 27.12 ms.
Rounds were reduced to 8 to off set the time gap. While the initial
algorithm appears quicker than the updated version, 128-bit block
size is still used. Extending block size to 128-bit decreases the risk
for dual block leakage, enhancing security. Th e 64-bit mark is around
32 gigabytes (232 blocks of 8 bytes). A 1TB drive is encrypted with
32 redundant blocks. (Table 5) shows the Comparison speed central
generation for various fi le sizes in milliseconds.

(Table 6) shows the encryption in milliseconds utilizes various
fi le sizes compared with the Two Fish Algorithm (TA).

(Table 7) shows the Decryption period in milliseconds utilizing
various fi le sizes.

An appropriate characteristic of any encryption algorithm is that
a minor fundamental change will trigger a wide text discrepancy.
Compared to Blowfi sh, the avalanche eff ect of modifi ed Blowfi sh
ensured that the algorithm’s diff usion was not aff ected by changes
in the F- functions. (Figure 4) indicates the avalanche percentage. It
can be deduced from the fi gure below that our developed Algorithm
for Blowfi sh outperforms the existing algorithm with 99% accuracy.
As the number of rounds increases, then the avalanche eff ect also
increases. Th e higher the number of avalanches, the higher the
security; the revised algorithm suggested a more signifi cant avalanche
and improved safety. (Figure 5) describes the Blowfi sh impact and
proposed modifi ed Blowfi sh

(Figure 6) describes the input size with the computation speed for
diff erent fi le sizes. Th e result is improved for modifying Blowfi sh than
with normal Blowfi sh.

P
P P

P

P

P

FUNCTIO

N F

FUNCTION

F

P2

P1
K1

K2

K1

K2

PLAINTEXT (128-BITS)

CIPHERTEXT (128-BITS)

15 MORE ROUNDS

Figure 4: Enhanced blowfi sh iteration process.

Figure 5: Blowfi sh impact and proposed modifi ed blowfi sh.

American Journal of Biometrics & Biostatistics

SCIRES Literature - Volume 5 Issue 1 - www.scireslit.com Page - 006

CONCLUSION AND RECOMMENDATION
Th is paper suggests an improved 128-bit block size and 128-bit key

Blowfi sh algorithm, which modifi es the initial blowfi sh architecture
with more s-boxes to reduce menarches. Results demonstrate that the
modifi ed algorithm remains suffi cient for the P-array and S-boxes to
achieve original storage performance. Since the modifi ed Blowfi sh
algorithm is faster than the Two algorithms, the reason is the rise
in block size and simplicity of the Blowfi sh Algorithm. Th e revised
Blowfi sh is quicker and has better output effi ciency than Blowfi sh’s
related algorithm—two fi sh. Th e crypto-based modifi ed Blowfi sh
algorithm has passed entropy and frequency checking. A 128-bit key
will take a 5e+025-year brute force attack, making it impossible to
use brute force and the algorithm for data security or fi le encryption
experiments. Other researchers may study the modifi ed algorithm for
potential hardware optimization work.

REFERENCES
1. Anshul S, Kashif M, Rohit Reddy PB, Ashwin U, Arshad K. Erratum

regarding missing Declaration of Competing Interest statements
in previously published articles. J Clin Orthop Trauma. 2020 Nov-
Dec;11(6):1177. doi: 10.1016/j.jcot.2020.10.025. Epub 2020 Oct 15.
Erratum for: J Clin Orthop Trauma. 2019 Mar-Apr;10(2):236-240. Erratum
for: J Clin Orthop Trauma. 2019 Mar-Apr;10(2):422-426. Erratum for:
J Clin Orthop Trauma. 2019 Jul-Aug;10(4):733-737. Erratum for: J
Clin Orthop Trauma. 2019 Jul-Aug;10(4):785-788. Erratum for: J Clin
Orthop Trauma. 2019 Jul-Aug;10(4):811-815. Erratum for: J Clin Orthop
Trauma. 2019 Sep-Oct;10(5):959-964. Erratum for: J Clin Orthop
Trauma. 2019 Sep-Oct;10(5):995-998. Erratum for: J Clin Orthop Trauma.

2019 Oct;10(Suppl 1):S88-S94. Erratum for: J Clin Orthop Trauma.
2019 Oct;10(Suppl 1):S193-S196. Erratum for: J Clin Orthop Trauma.
2020 Mar-Apr;11(2):310-313. Erratum for: J Clin Orthop Trauma. 2020
Mar;11(Suppl 2):S219-S222. Erratum for: J Clin Orthop Trauma. 2020
May-Jun;11(3):504-505. Erratum for: J Clin Orthop Trauma. 2020 May-
Jun;11(3):492-497. Erratum for: J Clin Orthop Trauma. 2020 Jul;11(Suppl
4):S428-S430. Erratum for: J Clin Orthop Trauma. 2020 Jul;11(Suppl
4):S448-S455. PMID: 33078051; PMCID: PMC7557265.

2. Law Kumar S, Gupta P. Personal authentication based on iris recognition. Int
J Sci Res. 2016;5(2). doi: 10.21275/v5i2.nov161104.

3. Kumar MA, Karthikeyan S. Investigating the effi ciency of blowfi sh and
rejindael (AES) algorithms. Int J Comput Netw Inf Secur. 2018;4(2). doi:
10.5815/ijcnis.2018.02.0 4.

4. Bhargavan K, Leurent G. On the practical (in-) security of 64-bit block ciphers:
Collision attacks on HTTP over TLS and open VPN. In Proceedings of the
ACM Conference on Computer and Communications Security. 2016;24(28).
doi: 10.1145/2976749.2978423.

5. Bhargavan K, Leurent G. On the Practical (In-) Security of 64-bit block
ciphers. 2016. doi: 10.1145/2976749.2978423.

6. Florence S, Bhuvaneswari Amma NG, Annapoorani G, Malathi K. Predicting
the Risk of heart attacks using neural network and decision tree. Int J Innov
Res Comput Commun Eng. 2019;2(11). https://bit.ly/3JAb9Bp

7. Gad R, Abd El-Latif AA, Elseuofi S, Ibrahim HM, Elmezain M, Said W. IoT
security based on iris verifi cation using multi-algorithm feature level fusion
scheme. 2019. doi: 10.1109/CAIS.2019.8769483.

8. Vaudenay S. On the weak keys of blowfi sh. In lecture notes in computer
science (including subseries lecture notes in artifi cial intelligence and lecture
notes in bioinformatics). 2017;1039(1). doi: 10.1007/3-540-60865-6_39.

9. Kumar V, Kumar R, Barbhuiya MA, Saikia M. Multiple Encryption using ECC
and its time complexity analysis. Int J Comput Eng Res Trends. 2016;3(11).
doi: 10.22362/ijcert/2016/v3/i11/48907.

10. Naito Y, Sugawara T. Light weight authenticated encryption mode of
operation for tweakable block ciphers. IACR Trans Cryptogr Hardw Embed
Syst. 2019. doi: 10.46586/tches.v2020.i1.66-94.

11. Pathak M, Srinivasu N, Bairagi V. Eff ective segmentation of sclera, iris and
pupil in noisy eye images Telkomnika. Telecommunication Comput Electron
Control. 2019;17(5). doi: 10.12928/TELKOMNIKA.v17i5.12551.

12. Pirbhulal S, Zhang H, Mukhopadhyay SC, Li C, Wang Y, Li G, Wu W, Zhang
YT. An effi cient biometric-based algorithm using heart rate variability for
securing body sensor networks. Sensors (Basel). 2015 Jun 26;15(7):15067-
89. doi: 10.3390/s150715067. Erratum in: Sensors (Basel). 2017 Mar
16;17(3): PMID: 26131666; PMCID: PMC4541821.

13. Sasi SB, Sivanandam N, Emeritus. A survey on cryptography using
optimization algorithms in WSNs. Indian J Sci Technol. 2021;8(3). doi:
10.17485/ijst/2021/v8i3/59585.

14. Shamim HM, Muhammad G, Rahman SMM, Abdul W, Alelaiwi A, Alamri A.
Toward end-to-end biometrics-based security for IoT infrastructure. IEEE
Wirel Commun. 2016;23(5). doi: 10.1109/MWC.2016.7721741.

15. Vaudenay S. On the weak keys of blowfi sh. 2017;27-32.

16. Mahdi JA. Design and implementation of proposed BR encryption algorithm.
IJCCCSE. 2018;9(1):1-17. https://bit.ly/3rnXpDs

17. Schneier B, Kelsey J, Whiting D, Wagner D, Hall C. Twofi sh: A 128-Bit Block
Cipher. NIST AES Propos. 1998;15(1):1-27. https://bit.ly/3rJjfBR

18. Muthukumar G, Dharma EG. A comparative analysis on symmetric key
encryption algorithms. Int J Adv Res Comput Eng Technol. 2019;3(2):379-
383.

19. Atia TS. Development of a new algorithm for key and S-box generation
in blowfi sh algorithm. J Eng Sci Technol. 2019;9(4):432-442. https://bit.
ly/3O3cg05

20. Chandrasekaran J, Raman JS. Ensemble of blowfi sh with chaos based
Sbox design for text and image encryption. Int J Netw Secure Its Appl.
2011;3(4):165-173. doi: 10.5121/ijnsa.2011.3415.

21. Abd El-Sadek AA, El-Garf TA, Fouad MM. Speech encryption applying a
modifi ed blowfi sh algorithm. International Conference on Engineering and

05
101520253035

0 200 400 600 800 1000 1200

Sp
ee

d(
m

s)

Size of input (kb)

Comparison speed for various file sizes in milliseconds

Modify Blow ish Algorithm Blow ish Algorithm
Figure 6: Comparison of speed for various fi le size.

0100020003000400050006000

0 200 400 600 800 1000 1200

Sp
ee

d(
m

s)

Size of input (kb)

Computational Speed for Encryption

Modify Blow ish Algorithm Blow ish Algorithm
Figure 7: Computation speed for encryption.

American Journal of Biometrics & Biostatistics

SCIRES Literature - Volume 5 Issue 1 - www.scireslit.com Page - 007

Technology. 2019;1-6. doi: 10.1109/ICEngTechnol.2014.7016764.

22. Alabaichi AM. A dynamic 3D S-Box based on cylindrical coordinate system for
blowfi sh algorithm. Indian Indonesian J Elec Eng & Comp Sci. 2015;8(30):1-
17. doi: 10.17485/ijst/2015/v8i30/86800.

23. Oishi NJ, Mahamud A, Asaduzzaman. Short paper: Enhancing Wi-
Fi security using a hybrid algorithm of blowfi sh and RC6. International
Conference on Networking Systems and Security. 2016;1-5. doi: 10.1109/
NSysS.2016.7400706.

24. Alabaichi AM, Mahmood R, Ahmad F, Michel MS. Randomness analysis
on blowfi sh block cipher using ECB and CBC Modes. J Appl Sci. June
2013;13(6):768-789. doi: 10.3923/jas.2013.768.789.

25. Nada Hussein MA, Suaad AA. Modifi ed blowfi sh algorithm for image
encryption using multi keys based on fi ve S-boxes. Iraqi Journal of Science.
2016.

26. Josephraj V. Performance enhancement of blowfi sh encryption using rk-
blowfi sh technique. International Journal of Applied Engineering Research.
2017;12:9236-9244.

