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INTRODUCTION

Bladder Cancer (BLCA) is among the most
common malignancies of the urinary system
and is widely recognized for its strong tendency
toward recurrence and metastasis. Its global
incidence and mortality remain elevated, with
a significantly greater prevalence in males
than in females [1,2]. Urothelial carcinoma,
squamous cell carcinoma, and adenocarcinoma
make up the majority of BLCA, with Urothelial
Bladder Cancer (UBC) being the most frequent,
representing more than 90% of cases [3]. Major
risk factors for BLCA include cigarette smoking,
chronic exposure to chemical carcinogens, and
chronic cystitis [4]. Although early-stage BLCA
can be diagnosed by urinalysis and cystoscopy
and treated with surgery, chemotherapy, or
radiotherapy [5], some patients are already
diagnosed with distant metastasis. In addition,
postoperative recurrence is common, and the
efficacy of existing second-line therapies is
limited, making advanced BLCA particularly
challenging to treat [6]. Immunotherapy,
and more specifically Immune Checkpoint
Inhibitors (ICIs), has seen major developments
in managing BLCA in recent years [7]. However,
tumor heterogeneity and differences in the
immune microenvironment lead to considerable
variation in patient responses, with overall
response rates remaining unsatisfactory [8].
These limitations highlight the urgent need
to explore metabolic pathways such as folate
metabolism, which may shape both tumor
biology and the immune microenvironment.
Hence, it is essential to pinpoint unique and
cutting-edge molecular biomarkers and to
establish effective predictive models to guide
personalized treatment.

Folate metabolism, a central component
of one-carbon metabolism, is essential for
nucleotide synthesis, S-Adenosylmethionine
(SAM) generation, and DNA methylation [9].
In normal cells, folate metabolism maintains
a dynamic balance between nucleic acid
synthesis and epigenetic regulation. However,
in tumor cells, this pathway is frequently
reprogrammed due to genetic mutations,
enzymatic abnormalities, or altered nutrient
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availability, leading to accelerated DNA
synthesis, aberrant epigenetic modifications,
and genomic instability [10]. Accumulating
evidence indicates that aberrant expression
related to folate metabolism is intimately
linked to the initiation and the advancement
of different forms of cancer. Moreover,
these genes may modulate the immune
microenvironment of the tumor by adjusting
immune cell infiltration and checkpoint
molecule expression, there by affecting
responsiveness to immunotherapy [11]. For
example, high expression of one-carbon/folate
metabolism-related genes is linked to altered
immune infiltration and unfavorable outcomes
in breast cancer [12]. Similarly, dysregulation
of FAMGs in colorectal cancer has been linked
to immunosuppressive microenvironments
and adverse clinical outcomes [13], suggesting
that folate metabolism may modulate tumor
progression through a metabolism-immunity
axis. However, systematic investigations into
the prognostic significance, immunological
associations, and therapeutic potential of
FAMGS in BLCA remain limited.

To address this deficiency, we synthesized
transcriptomic and clinical data from TCGA
and GEO cohorts and applied machine learning
strategies to formulate a Folate Metabolism-
Based Prognostic Index (FAMPI). Using FAMPI
scores, we conducted Patient stratification
according to FAMPI scores identified distinct
molecular and clinical subtypes, providing
new perspectives on the involvement of folate
metabolism in BLCA progression and immune
modulation. This research therefore introduces
an innovative molecular tool for individualized
therapy and contributes to a deeper mechanistic
understanding of folate metabolism in bladder
cancer.

MATERIALS AND METHODS

Dataset collection

In this investigation, transcriptomic
sequencing data along with associated clinical
details for Bladder Cancer (BLCA), encompassing
both tumor and normal control samples, were
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obtained from the TCGA database (https://
portal.gdc.cancer.gov/) [14]. The raw sequencing
data were normalized, and tumor samples
labeled as “01A” and normal samples labeled
as “11A” were saved for subsequent analysis.
An expression matrix was then constructed
employing protein-coding genes, with tumor
sample expression normalized against normal
samples. This matrix was subsequently used as
the basis for analyzing differential expression
[15,16]. and model construction.

Differential expression analysis

Expression data normalization was
performed using the voom function [15]. We
employed the R package called limma [16] to
investigate the Differential Expression Of Folate
Metabolism-Associated Genes (DEFAMGS)
between tumor (01A) and normal (11A)
samples. Genes were considered differentially
expressedif they satisfied the conditions of
|log2FC| being greater than 1 and a p value less
than 0.05 [16]. To establish a Protein-Protein
Interaction (PPI) network, significantly altered
genes were uploaded to the STRING database
[17]; the resulting network was subsequently
visualized through Cytoscape (version 3.8.2)
(18] Using the MCODE plugin [19] in Cytoscape,
key modules were identified with the following
parameters: degree cutoff of 2, node score cutoff
of 0.2, k-core of 2, and a maximum depth of 100.
Hub DEFAMGs were subsequently identified
employing five different algorithms such as
stress, betweenness, radiality, closeness, and
bottleneck within the “CytoHubba” plugin
[20]. Finally, using NetworkAnalyst 3.0,
predictions were made for the transcription
factors of the significant genes [21] to construct
a transcription factor—target gene regulatory
network.

Identification of
clusters

famgs-associated

Consensus clustering was performed on
the expression profiles exhibiting Differential
Expression Folate Metabolism-Related Genes
(DEFAMGs) using the R package Consensus
Cluster Plus [22]. Evaluation of DEFAMG
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expression levels within the TCGA-BLCA
dataset identified two clusters as optimal,
dividing all tumor samples into subtypes C1 and
C2. Survival differences between these subtypes
were subsequently visualized employing the R
survival package [23].

Weighted gene co-expression network
analysis

To examine folate metabolism-related genes
with potential key functions in critical modules,
the R package WGCNA was employed to
develop a weighted network of the coordinated
expression of multiple genes [24].Based on the
normalized expression matrix, low-expression
genes and outlier samples were first removed.
A soft approach was used to build a scale-free
network threshold approach power selection,
after which genes were clustered according
to the Topological Overlap Matrix (TOM) and
assigned to distinct co-expression modules.
Correlations between Module Eigengenes (MEs)
and sample subtypes (C1/C2) were further
analyzed to identify key modules that were
strongly associated with specific subtypes. We
also examined the associations between MEs,
tumor stage, and overall survival, and found
that the turquoise module showed the strongest
correlation with the folate-metabolism-
related subtype (cluster2), more advanced
pathological stage, and poorer prognosis.
Therefore, the turquoise module was defined as
the hub module for subsequent modeling and
mechanistic studies.Development of prognostic
signature

To construct a folate metabolism-related
prognosticsignature, we employed anintegrated
multi-algorithm machine learning pipeline.
Genes in the turquoise module identified by
WGCNA were intersected with DEFAMGs,
yielding 74 candidate genes. Subsequently,
univariate Cox proportional hazards
regression was applied to these 74 genes with
a significance threshold of p < 0.05 to obtain
candidate prognostic FAMGs. These candidate
genes were then independently evaluated by
four machine learning algorithms: LASSO Cox
regression [25], XGBoost [26], decision tree
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[27], and random forest [28]. Each algorithm
produced a gene importance ranking, with
LASSO using the absolute values of regression
coefficients and the tree-based models using
feature importance/Gini importance. The
penalty parameter L in the LASSO Cox model
was determined via 10-fold cross-validation.
To integrate the results of different algorithms
and reduce bias from any single method, we
adopted a consensus-ranking strategy: the
rankings of each gene across the four algorithms
were min—-max normalized and then averaged
with equal weights to obtain a consensus
importance score, from which the top 10 genes
were selected as the core candidate set for
constructing the prognostic model. These 10
consensus genes were subsequently entered into
a multivariate Cox proportional hazards model,
and stepwise regression was used for variable
selection. This process ultimately yielded an
optimal six-gene signature, termed the Folate
Metabolism—-Associated ~ Prognostic  Index
(FAMPI), consisting of SLC19A3, MTHFDI1L,
CAV1, POU5F1, SETBP1, and HSPG2. For each
patient, the FAMPI risk score was calculated
as follows: FAMPI score = (coefficient; x
expression value:) + (coefficient. x expression
value.) + ... + (coefficients x expression values),
where coefficient:—coefficient, represent the
multivariate Cox regression coefficients for
SLC19A3, MTHFD1L, CAVi, POU5F1, SETBP1,
and HSPG2, respectively, and expression
value:—expression values denote the normalized
expression values of these genes.

Development of the nomogram

We employed multivariate Cox regression
and applying stepwise regression analyses
to combine characteristics of patients
with BLCA, including age, gender, clinical
pathological stage, and FAMPI, to create a
predictive nomogram [29]. Visualizations
of the nomogram and calibration plot were
generated using the rms package [30]. The time
ROC package was utilized to perform a Receiver
Operating Characteristic (ROC) analysis for
patients with BLCA [31]. FAMPI was analyzed
through correlation and stratification based on
the specified clinical parameters. Furthermore,
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Decision Curve Analysis (DCA) was used
to assess the net benefit of combining the
nomogram with a model that relies solely on
clinical characteristics [32].

Gene set enrichment analysis

Potential molecular mechanisms
distinguishing the high- and low-risk groups,
as determined by the FAMPI risk model,
were examined through Gene Set Enrichment
Analysis (GSEA) conducted with the GSEA
software (version 4.2.3) [33]. Gene sets from
hallmark, KEGG, and GO in MSigDB were used
as references [34-37]. Standard parameters
were applied according to the GSEA guidelines,
and significance thresholds were set at FDR
< 0.25 and NOM p < 0.05 to identify enriched
pathways.

Tumor immune microenvironment analysis

To evaluate the degree of immune cell
presence in BLCA patients, the tumor immune
microenvironment was analyzed using
ESTIMATE, ssGSEA, and CIBERSORT. The
immune score, stromal score, and tumor purity
corresponding to each sample were quantified
through the ESTIMATE algorithm [38]. The
comparative abundance of 28 immune cell types
was gauged via ssGSEA [39]. And the CIBERSORT
algorithm was harnessed to quantify the
fractions of 22 immune cell subsets in each
sample [40]. To explore potential mechanisms
in the immune microenvironment, disparities
in immune cell infiltration between high- and
low-risk groups delineated by the FAMPI risk
model were investigated.

Mutation profile analysis

Variations in mutation profiles across the
FAMPI model-defined high- and low-risk
groups were analyzed using mutation data from
the TCGA-BLCA cohort [41], processed with the
R package maftools [42]. Mutation frequency
and waterfall plots were subsequently generated
for each group. We further compared Tumor
Mutation Burden (TMB) between the two groups
[43) to assess mutation level distributions
across subtypes, thereby elucidating potential

Man'Y, et al. (2026) Int J Cancer Cell Biol Res, DOI: https://dx.doi.org/10.37871/ijccbr25

PAGE 4 OF 22



By

molecular mechanisms associated with the
model.

Identification of the
efficacy

immunotherapy

The Cancer Immunome Atlas (TCIA, https://
tcia.at/home) provided data to gauge how BLCA
patients might respond to Immune Checkpoint
Inhibitor (ICI) therapy [44]. The TIDE algorithm
was employed to simulate anti—PD-1 and anti-
CTLA-4 therapeutic scenarios, estimating
differences in immunotherapy responses
between FAMPI model-defined high- and
low-risk groups, thereby providing additional
insights into immune evasion capacity and
immunotherapeutic sensitivity [45].

Drug sensitivity analysis

The oncoPredict package in R was developed
to quantify the chemosensitivity of TCGA-
BLCA patients stratified by FAMPI risk scores,
aiming to facilitate individualized therapeutic
strategies [46]. To determine the concentration
at which inhibition is half-maximal (IC50), the
oncoPredict package was utilized by aligning
data on gene expression from patient samples
with that of cancer cell lines. The Wilcoxon
rank-sum test was applied to assess differences
in predicted IC50 values between high- and
low-risk groups, with a importance threshold of
p < 0.05 [47]. To enhance the reliability of drug
sensitivity evaluation, the GSCALite platform
was additionally utilized, which integrates the
GDSC, CTRP, and CellMiner datasets (http://
bioinfo.life.hust.edu.cn/GSCA/#/) [48]. Notable
variations in predicted drug sensitivity were
observed between groups classified as high-risk
and low-risk by the FAMPI model. Statistical
analysis

Survival curves were generated through the
Kaplan—Meier method [29]. The Wilcoxon test
[49] was employed to compare two groups,
whereas the Kruskal-Wallis test was utilized
for comparisons among multiple groups. The
relationships between variables were assessed
using Spearman’s rank correlation analysis
[50]. A P value threshold of 0.05 or less defined
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statistical significance, and all analyses were
performed using R software (version 4.1.3).

RESULTS

Identification of differentially expressed
DEFAMGs-related genes

Through comparison of Tissues from BLCA
and healthy tissues, we discovered 4,486
Differentially Expressed Genes (DEGs), of which
2,120 were up-regulated and 2,366 genes were
down-regulated in BLCA patients. Intersecting
these DEGs with Folate Metabolism—Associated
Genes (FAMGs) vielded 341 overlapping
genes, which were defined as DEFAMGs.
The volcano plot of DEFAMGs and the Venn
diagram illustrating the overlap between
DEGs and FAMGs are shown in figures 1A,B.
The overlapping genes between BLCA-DEGs
and FAMGs were subjected to PPI network
construction using the STRING database and
subsequently illustrated in Cytoscape (v3.8.2),
resulting in the interaction network shown in
figure 1C. Eight overlapping hub genes (FGF2,
FGF7, FGF10, IL6, IGF1, VCAM1, STAT3, and
CXCL12) were identified by employing five
different algorithms (MCC, EPC, Degree,
Betweenness, and Closeness) in Cytoscape
(v3.8.2) (Figures 1D,E). Gene Ontology (GO)
enrichment analysis revealed that the DEFAMGs
were primarily related to cellular responses
to inorganic substances, lipid metabolism,
xenobiotic stimuli, and cell proliferation
regulation and phosphorylation (Figures
1F,G). The marked enrichment of DEFAMGs in
multiple cancer-related pathways—including
Pathways in cancer, PI3K-Akt signaling,
Fanconi anemia, and MicroRNAs in cancer—
was identified through Kyoto Encyclopedia of
Genes and Genomes (KEGG) analysis (Figure
1H).

Identification of Clusters related to FAMG-
Related Genes

To stratify the BLCA cohort, we employed
consensus clustering on the expression patterns
of the eight overlapping hub DEFAMGs,
evaluating cluster numbers (k) from 2 to 8.
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Figure 1 Identification of Differentially Expressed Folate Metabolism-Associated Genes (DEFAMGs). A) This volcano plot depicts the gene
expression profiles that contrast bladder cancer tissues with adjacent non-cancerous samples. B) Venn diagram showing the intersection
between BLCA-DEGs and FAMGs. C) STRING was used to generate a PPl network of overlapping genes, which was then visualized with
Cytoscape. D) A Venn diagram in CytoHubba illustrates the hub genes identified using the algorithms MCC, EPC, Degree, Betweenness, and
Closeness. E) PPI subnetwork comprising the eight hub genes. F) GO enrichment results for DEFAMGs within Biological Processes (BP). G)
GO enrichment results for DEFAMGs within Molecular Functions (MF). H) KEGG pathway analysis of DEFAMGs.

As indicated by the Cumulative Distribution
Function (CDF) curves and the delta area plot,
the clustering reached optimal stability at k
= 2, demonstrating strong uniformity within
clusters and minimal variation between clusters
(Figures 2A-C). The Kaplan-Meier analysis
revealed that patients classified into cluster C2
exhibited a markedly poorer overall survival
than those in cluster C1 (Figure 2D). According
to the ESTIMATE algorithm, cluster C2 patients
showed elevated stromal scores, immune
scores, and ESTIMATE scores, accompanied
by a markedly reduced tumor purity compared
with those in cluster C1 (Figure 2E). According
to the TIDE algorithm, patients in cluster C2

exhibited increased TIDE, T-cell impairment
and rejection metrics (Figure 2F), pointing to
an increased probability of immune system
evasion within this subgroup. The ssGSEA
analysis revealed distinct patterns of the
infiltration of immune cells between the two
groups, with cluster C2 exhibiting a notably
higher overall level of immune infiltration than
cluster C1 (Figures 2G,H).

Identification of the Hub Module and Genes
Related to FAMG in Bulk RNA-Seq

To identify FAMG-associated gene modules
linked to BLCA, a method for examining
gene co-expression networks with Weighted
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Figure 2 Identification of clusters related to FAMG-Related Genes. A) The consistency clustering analysis of 8 overlapping center DEFAMGs in
the TCGA-BLCA cohort (k = 2). B) Color-coded CDF curves illustrating the consensus matrices for every k value. C) Optimal clustering stability
atk =2 is indicated by the relative changes in the area under the CDF curves for each k. D) Comparison of Kaplan—Meier overall survival curves
for patients in clusters C1 and C2. E) Distribution of stromal, immune, and ESTIMATE scores, as well as tumor purity, across patient groups as
determined by the ESTIMATE algorithm. F) TIDE analysis showing differences in TIDE, T-cell dysfunction, and T-cell rejection scores across
clusters. G) The distribution of 28 immune-cell subsets across clusters C1 and C2. H) A heatmap displaying the relative abundance of 28
immune cell subsets assessed with the ssGSEA algorithm.
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Associations (WGCNA) was conducted using the
TCGA-BLCA cohort. A soft-thresholding power
of 3 was selected to achieve a network without
a characteristic scale topology (Figure 3A).
Eleven co-expression modules were obtained,
each visualized in a distinct color to represent
different gene clusters. The turquoise module
showed the strongest correlation with BLCA
clusters among all identified modules, with a
correlation coefficient of 0.73 and a p-value less
than 0.001 (Figures 3B,C). To further explore
the biological significance, we intersected the
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turquoise module genes with FAMG-DEGs,
yielding 74 overlapping key genes (Figure 3D).
Using the expression data of the 74 overlapping
genes, univariate Cox regression identified
27 genes as prognostic markers that are
significantly related to overall survival (Figure
3E).

Development and validation of the FAMPI

We applied four machine learning
algorithms-LASSO Cox regression, XGBoost,
decision tree, and random forest-to further
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Figure 3 Identification of the Hub Module and Genes Related to FAMG in Bulk RNA-Seq. A) Hierarchical clustering dendrogram of genes
constructed by WGCNA, where different colors represent distinct modules. B) Relationship between Gene Significance (GS) and Module
Membership (MM) for genes in the turquoise module, visualized in a scatter plot. C) Correlation heatmap between module eigengenes and
clinical traits in BLCA patients. D) The intersection between the turquoise module genes and FAMG-DEGs, revealing a core set of 74 overlapping
genes. E) Univariate Cox analysis in the TCGA-BLCA cohort discovered 27 prognostic DEFAMGs.
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screen key prognostic genes from the 27
prognostic DEFAMGs. Consequently, six
representative genes (SLC19A3, MTHFDIiL,
CAVi, POU5F1, SETBP1, and HSPG2) were
identified (Figure 4A). Based on the expression
patterns and regression coefficients of these
six genes, we established a folate metabolism-—
associated prognostic index (FAMPI) as follows:
FAMPI = (SLC19A3 x 0.43465778) + (MTHFD1L x
0.22104801) + (CAV1 x —0.11899016) + (POU5F1
x — 0.12543035) + (SETBP1 x 0.28322608) +
(HSPG2 x 0.05826853). BLCA patients were
divided into high and low FAMPI groups based
on the median FAMPI score. Kaplan-Meier
survival analysis indicated that patients with
high FAMPI scores had much worse overall
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survival than those with low scores in both the
TCGA training cohort (p < 0.001, Figure 4B) and
the independent GSE13507 validation cohort (p
= 0.0035, Figure 4C). A prognostic nomogram
integrating FAMPI with age, gender, and
clinical stage was established to estimate the
overall survival probabilities for 1, 3, and 5
years (Figure 4D). Cox regression analyses,
encompassing both univariate and multivariate
models, revealed that FAMPI functions as an
independent prognostic biomarker in BLCA
(Figures 4E,F). The calibration plots indicated
a close agreement between the predicted
and observed survival outcomes (Figure 4G).
Moreover, the decision curve analysis illustrated
that the nomogram provided superior clinical
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Figure 4 Development and validation of the FAMPI. A) The top 15 genes identified using four machine learning algorithms. B) Kaplan-Meier
survival plots for the training cohort of TCGA-BLCA. C) Kaplan—Meier survival plots for the independent validation cohort GSE13507. D)
Construction of the nomogram integrating FAMPI with clinical characteristics. E) Univariate Cox regression analysis. F) Multivariate Cox
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utility over traditional clinicopathological
parameters (Figure 4H). In addition, the
C-index confirmed its superior discriminative
performance compared with other evaluated
models (Figure 4I). Collectively, these results
highlight that the FAMPI-based nomogram
represents a reliable and individualized tool for
prognostic assessment in BLCA patients.

The accuracy of this nomogram’s predictions
was confirmed through ROC analysis. In the
TCGA-BLCA training group, the AUC values
for overall survival at 1, 3, and 5 years were
0.73, 0.73, and 0.75, respectively (Figure 5A).
Consistent findings were obtained in the
external validation cohort GSE13507, where
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the AUCs reached 0.95, 0.95, and 0.97 (Figure
5B). As shown in figures 5C,D the FAMPI
distribution, patient survival outcomes, and
expression patterns of the six FAMPI genes
varied markedly between the two FAMPI
subgroups. Among the six genes, MTHFDIiL,
SETBP1, SLC19A3, and HSPG2 showed positive
coefficients and acted as risk factors, whereas
CAV1and POU5F1 exhibited negative coefficients
and were associated with a protective effect. In
the high-FAMPI group, all six genes showed
significantly altered expression levels compared
with the low-FAMPI group, suggesting that
this integrated signature captures a dynamic
balance between risk-enhancing and protective
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Figure 5 The prognostic value of FAMPI. A) ROC curves illustrating the predictive accuracy of FAMPI for 1-, 3-, and 5-year Overall Survival (OS)
in the TCGA-BLCA cohort. B) ROC curves depicting the predictive performance of FAMPI for 1-, 3-, and 5-year OS in the independent validation
cohort GSE13507. C) Distribution of FAMPI scores, patient survival outcomes, and expression patterns of the six FAMPI genes (SLC19A3,
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expression patterns of the six FAMPI genes in the GSE13507 cohort.
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genes. This trend was further substantiated in
the independent validation dataset GSE13507.
Collectively, these observations demonstrate
that FAMPI possesses strong predictive
efficacy for both short- and long-term survival
outcomes in BLCA patients.

Clinical Relevance Assessment of the
FAMPI
Prognostic significance of the FAMPI

signature in subgroups with distinct clinical
profiles. Based on survival status, molecular
cluster classification, risk score, age, gender,
and pathological stage, patients were
categorized into different subgroups for
comparison. The findings indicated that FAMPI
expression levels were markedly increased in
non-survivors, in cluster 2, in the high-risk
group, in individuals older than 60 years, and
in those at advanced pathological stages III-
IV (Figures 6A-F). Moreover, Kaplan-Meier
survival analysis consistently demonstrated
that patients with higher FAMPI scores had
considerably poorer overall survival than those

== INTERNATIONAL JOURNAL OF CANCER & CELLULAR BIOLOGY RESEARCH Issn: 2641-4341

with lower scores across different subgroups,
including those aged 60 years or younger, those
older than 60 years, females, males, stages I-1I,
and stages III-1V (Figures 6G-L). Collectively,
these results underscore that FAMPI functions
as a robust and stable prognostic biomarker for
BLCA patients across diverse clinical contexts.

Gene set enrichment and tumor immune
microenvironment analysis

Gene Set Enrichment Analysis (GSEA)
was conducted using Gene Ontology (GO)
terms to explore the biological mechanisms
that differentiate the two risk groups. The
analysis revealed that high-risk patients were
significantly enriched in pathways associated
with cell growth, cellular response to growth
factor stimulation, and T-cell activation,
whereas low-risk patients showed enrichment
in processes such as amine transport,
cellular response to nitrogen compounds,
and homeostatic regulation (Figures 7A,B).
Considering the close association between
the risk score and the tumor immune
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Figure 6 Clinical relevance of the FAMPI signature in bladder cancer patients. A-F) Boxplots showing FAMPI score distributions according
to clinical features: survival status (alive vs., death), molecular cluster (C1 vs., C2), risk group (low- vs., high-risk), age (< 60 vs., > 60 years),
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microenvironment, subsequent  immune
evaluation was conducted to assess infiltration
using multiple computational algorithms. The
high-risk cohort demonstrated significantly
elevated immune, stromal, and ESTIMATE
scores, while exhibiting reduced tumor purity
in comparison to those in the low-risk cohort
(Figure 7C). Further immune profiling revealed
that most immune cell types differed markedly
between the two groups, with the high-risk
cohort showing elevated infiltration of a wide
range of immune cells (Figure 7D). Moreover,
correlation analysis revealed significant
covariation between the six FAMPI genes and
levels of immune cell infiltration, highlighting
a dynamic interplay between the expression
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of these genes and the composition of the
tumor immune landscape (Figure 7E). These
findings imply that the convergence of aberrant
biological processes and a distinctive immune
microenvironment collectively drives the
adverse clinical outcomes in high-risk patients.

Genomic variation landscape

To characterize mutational distinctions
between FAMPI categories, we compared the
somatic mutation landscapes of the high-
and low-FAMPI cohorts. TP53, TTN, KMT2D,
ARID1A, and MUC16 were the top recurrently
altered genes in both cohorts, with a slightly
elevated mutation frequency in the high-
FAMPI cohort. (Figures 8A,B). Analysis of co-
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Figure 7 Gene set enrichment analysis and tumor immune microenvironment characteristics between FAMPI-defined risk groups. A-B) GSEA
based on GO terms comparing high- and low-risk groups. C) Violin plots showing differences in ESTIMATE scores, immune scores, stromal
scores, and tumor purity between the two risk groups. D) Boxplots of the 28 tumor-infiltrating immune cell subsets in high- and low-risk groups.
E) Heatmap showing correlations between the six FAMPI genes and tumor-infiltrating immune cell populations.
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occurrence and mutual exclusivity revealed that
most mutations exhibited cooperative patterns,
while only a few showed exclusionary effects.
Specifically, KMT2A-TP53 and ARID1A-RB1
mutations tended to co-occur in the high-
FAMPI group, whereas mutations in MUC16
and TTN showed a moderate tendency for co-
occurrence in the low-FAMPI cohort (Figures
8C,D). Additionally, mutation profiling of the
six FAMPI genes (SLC19A3, MTHFDiL, CAV1,
SETBP1, HSPG2, and POU5F1) demonstrated
that most alterations were dominated by
missense mutations, with occasional nonsense
and splice site variants (Figure 8E).

Prediction of immunotherapy efficacy and
immune function

Immune Checkpoint Inhibitors (ICIs) have
demonstrated remarkable therapeutic efficacy
across multiple malignancies. In this analysis,
patients classified in the high-FAMPI cohort
displayed significantly elevated TIDE values and
enhanced T-cell exclusion indices. In contrast,
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T-cell dysfunction and MSI levels showed no
notable differences between the subgroups,
implying an increased potential for immune
escape in individuals with high-FAMPI BLCA
(Figure 9A). Similarly, IPS-based assessment
indicated an absence of notable differences
across the majority of immune subtypes
between the high- and low-FAMPI cohorts
(Figure 9B). Moreover, ssGSEA assessment
revealed that several immune-associated
pathways—including MHC class I antigen
presentation, APC co-stimulatory signaling,
immune checkpoint regulation, and T-cell
activation—were more prominently active
within the high-FAMPI cohort (Figure 9C).
Correlation analysis further demonstrated that
the six representative prognostic genes were
significantly and positively associated with
the majority of immune checkpoint molecules
(Figure 9D). Additionally, the majority of
immune checkpoint molecules—including
CD274 (PD-L1), PDCD1 (PD-1), CTLAZ, LAG3,
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Figure 9 Prediction of immunotherapy efficacy and immune function. A) Comparisons of TIDE, T-cell dysfunction, T-cell exclusion, and MSI
scores between the high- and low-FAMPI groups. B) IPS scores across different subtypes in the two FAMPI groups. C) Activities of immune-
associated pathways showing significant differences between the high- and low-FAMPI cohorts based on ssGSEA. D) Correlations between
six representative prognostic genes and immune checkpoint regulators. E) Immune checkpoint-related gene expression patterns across

high- and low-FAMPI cohorts.

TIGIT, HAVCR2 (TIM-3), CD276 (B7-H3),
and ICOS—were markedly elevated in the
high-FAMPI cohort, while a few, for instance
TMIGD2, showed no notable differences (Figure

9E).
Drug Sensitivity Analysis

To further explore the clinical relevance of
the six FAMPI-associated prognostic genes
in facilitating personalized therapy for BLCA,
we assessed the responsiveness of frequently
applied chemotherapeutic agents within the
high- and low-FAMPI cohorts. According
to the IC50 results, individuals in the high-
FAMPI group displayed markedly reduced IC50
values for several standard chemotherapeutic
agents, suggesting that the FAMPI score may
serve as a predictive marker of chemotherapy

responsiveness in BLCA patients (Figure 10A).
To further investigate the association between
the expression profiles of the six significant
prognostic genes and drug sensitivity, we
employed the CellMiner platform for analysis.
Correlation plots of the five drugs showing the
most pronounced correlations indicated that
positive correlations were linked to elevated
gene expression and enhanced drug sensitivity,
while negative correlations implied greater
drug resistance (Figure 10B). In addition, data
obtained from the GDSC database further
supported that expression levels of certain
characteristic genes were positively correlated
with multiple drug sensitivities, whereas others
showed negative correlations, reinforcing their
potential roles as biomarkers for chemotherapy
response in BLCA (Figure 10C).
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Figure 10 Drug sensitivity analysis between the two FAMPI groups. A) lllustrates the IC50 comparison of frequently applied anticancer drugs in

the high- and low-FAMPI subgroups. B) Presents the association between

the expression profiles of pivotal characteristic genes in the FAMPI

model and drug sensitivity, with bar plots representing the top five drugs most strongly associated with each gene. C) Presents a correlation
heatmap linking the six FAMPI genes of the FAMPI model to drug sensitivity data obtained from the GDSC database.

DISCUSSION

Folate metabolism is essential for DNA
synthesis and methylation, thereby affecting
tumor cell proliferation and therapeutic
response [51,52]. Clinically, DHFR and TYMS
have become classical antimetabolite targets,
highlighting the translational potential of Folate
Metabolism-Associated Genes (FAMGs) [53]. In
this study, we systematically profiled Folate
Metabolism—-Associated Genes (FAMGS) in

bladder cancer (BLCA). Differential expression
analysis identified 341 DEFAMGs (the
intersection of BLCA-DEGs and FAMGs, Figure
1B), among which 194 were upregulated and
147 were downregulated. Consensus clustering
divided patients into two molecular subtypes,
among which Cluster 1 exhibited the highest
tumor purity and the lowest immune cell
infiltration, stromal content, and ESTIMATE
index, together with the highest T-cell exclusion
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and impairment scores, and reduced MSI.
These findings indicate an immunologically
“cold” but immune-evasive phenotype. This
is consistent with prior evidence that MTHFD2
can upregulate CD274 expression through
IFN-y signaling [54], supporting the concept
that metabolic reprogramming can shape the
immune microenvironment in BLCA.

To investigate the molecular factors
contributing to these phenotypic differences,
we applied a Weighted Gene Co-Expression
Network Approach (WGCNA). The turquoise
module, which showed the strongest negative
correlation with Cluster 1, was identified as
the most clinically relevant. From this module,
we refined 74 core genes overlapping with
DEFAMGs. Subsequent univariate Coxregression
and machine learning analyses identified six
key genes (SLC19A3, MTHFD1L, SETBP1, CAV1,
POU5F1 and HSPG2) to construct the FAMPI
risk signature. These genes encompassed both
oncogenic drivers and potential protective
factors, highlighting a balanced interplay
between metabolism, immunity, and prognosis.
For instance, MTHFDI1L, a mitochondrial one-
carbon enzyme, has been recognized as a
poor prognostic indicator in colorectal cancer
[55,56] and hepatocellular carcinoma [57], and
we verified its contribution as a risk factor in
BLCA [58]. Similarly, SETBP1 is a recognized
oncogene promoting proliferation [59],
significantly overexpressed in the high-risk
group. Conversely, CAV1, known for its context-
dependent dual roles [60], showed a protective
effect in our model. Intriguingly, POU5F1
(Oct4), though generally linked to stemness and
aggressiveness, acted as a favorable factor here,
in line with tumor-type-specific heterogeneity
[61]. Finally, SLC19A3, though not a classical
folate transporter, has been implicated in drug
sensitivity [62], suggesting a role in modulating
therapeutic response in BLCA. In addition,
HSPG2, encoding perlecan—a key heparan
sulfate proteoglycan within the extracellular
matrix—has been associated with tumor
invasion and angiogenic processes [63], and
was recognized as a risk factor in our model.
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From a clinical perspective, FAMPI
demonstrated superior prognostic predictive
performance compared with traditional clinical
features across both TCGA and GSE13507
cohorts. Notably, high-FAMPI patients
exhibited an immunosuppressive Tumor
Microenvironment (TME) with unregulated
immune Checkpoints (CD274, CTLA4) and
higher Immunophenoscores (IPS). Despite
low-FAMPI patients having higher TIDE scores,
suggesting immune dysfunction, this does not
conflict with our conclusion. TIDE primarily
reflects T-cell dysfunction or exclusion,
while IPS and immune checkpoint expression
represent an “inflamed but suppressed” state
[64]. Clinically, such a state is often associated
with greater sensitivity to Immune Checkpoint
Inhibitors (ICIs) [65]. Therefore, FAMPI not
only stratifies prognosis but also predicts
immunotherapy benefit, offering value for
patient selection. In addition, differential drug
sensitivity analyses suggested that FAMPI may
guide chemotherapy choice, further supporting
its clinical utility.

Mechanistically, = pathway  enrichment
analysis suggested that the high-risk group
exhibitednotableenrichment of TGF-3,BMP,and
PI3K-Akt signaling cascades, which participate
in immune suppression, fibroblast activation,
and tumor growth. The enrichment of TGF-p
signaling in particular provides a plausible
explanation for the immunosuppressive
phenotype [66]. Conversely, the low-risk
group demonstrated marked enrichment in
core metabolic pathways, notably ribosome
biogenesis and oxidative phosphorylation.
Furthermore, distinct mutational patterns
between groups—including alterations in
Chromatin Remodeling—Related Genes (e.g.,
KMT2A, CREBBP) that were more frequently
observed within the high-risk cohort, whereas
alterations such as MACF1 mutations were
identified in the low-risk cohort—suggest
that folate metabolic reprogramming may
collaborate with genomic instability to drive
divergent BLCA trajectories [67]. Collectively,
these findings elucidate the mechanistic basis
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underlying the observed immunological and
clinical heterogeneity.

Importantly, compared with previously
reported immune or metabolism-based models
[68,69], FAMPI represents the first folate
metabolism—focused prognostic index in BLCA.
Itrobustlyintegrates metabolicreprogramming,
immune microenvironment characteristics,
somatic mutation landscapes, and therapeutic
response prediction. Thus, FAMPI functions
not merely as a prognostic marker but also as
a promising instrument for decision support in
guiding precision treatment strategies, thereby
promoting advances in personalized oncology.

In addition, the predictive performance
of FAMPI for overall survival was strongly
validated. Within the TCGA dataset, the AUCs for
1-, 3-, and 5-year overall survival reached 0.77,
0.75, and 0.73, respectively. In the independent
GSE13507 dataset, the corresponding AUCs
reached 0.95, 0.93, and 0.91, confirming the
strong robustness and reproducibility of the
model. Furthermore, the drug sensitivity
analysis uncovered significant variations in
therapeutic responses to commonly used
chemotherapeutic agents across the different
risk groups. Notably, high expression of
SETBP1 was consistently associated with
poorer outcomes and chemotherapy resistance.
Interestingly, For POU5F1, although it acted as
a favorable prognostic factor within the FAMPI
model, its high expression also correlated
with distinct drug response patterns. This
suggests that the role of POU5F1 may be
context-dependent, reflecting tumor type-
specific heterogeneity and potentially divergent
mechanisms in prognosis versus therapy
sensitivity. These findings not only reinforce the
clinical value of FAMPI in prognostic prediction
but also highlight its potential as a supportive
tool for guiding individualized chemotherapy
selection.

However, the conclusions of this study are
mainly based on data analysis from public
databases, and several limitations should be
noted: (1) the sample size collected in this
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study was limited, and additional clinical
samples from larger cohorts with expanded
study populations are required to enhance the
credibility of the findings. (2) The transcriptomic
and clinical datasets of BLCA patients in this
study were primarily obtained from the TCGA
and GEO public databases, which may introduce
differences between datasets; thus, further
efforts are needed to address potential data bias
and improve the reliability of the analysis. (3)
The analytical results of this study still require
validation in broader patient populations, and
additional molecular experiments are necessary
to further elucidate the molecular mechanisms
of FAMPI in BLCA patients. (4) The drug
sensitivity profiles associated with the FAMPI
signature were inferred computationally using
in silico prediction tools based on transcriptomic
data; these findings must be corroborated
by functional assays in BLCA cell lines and
other experimental models before they can be
translated into clinical decision-making.

CONCLUSION

In summary, the FAMPI model established
and validated herein can serve not merely as
a potential molecular classifier for individuals
with bladder cancer but also as a dependable
indicator of therapeutic responses to
chemotherapy and immunotherapy. Moreover,
it is expected to provide valuable insights
for personalized clinical management and
treatment decision-making in BLCA.
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