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Abstract
The mechanisms through which folate metabolism infl uences Bladder Cancer 

(BLCA) prognosis and the tumor immune microenvironment remain insuffi  ciently 
understood. By integrating multi-omics data, we identifi ed 341 genes associated 
with Folate Metabolism (FAMGs) and developed a 6-gene Folate-Metabolism-
Derived Prognostic Index (FAMPI: SLC19A3, MTHFD1L, CAV1, POU5F1, SETBP1, 
and HSPG2) using machine learning. In both the TCGA-BLCA training set and the 
independent GSE13507 cohort, elevated FAMPI scores were consistently linked 
to poorer overall survival, whereas lower scores suggested better outcomes. 
A nomogram combining FAMPI and clinical-pathological variables surpassed 
individual clinical features and offered the highest net clinical benefi t in decision-
curve analysis. On a biological level, high-FAMPI tumors exhibited an infl ammatory 
but immunosuppressive microenvironment, characterized by elevated checkpoint 
molecule expression (e.g., CD274 and CTLA4), increased TIDE and T-cell exclusion 
scores, and enhanced immune-cell infi ltration—indicating immune activity alongside 
immune evasion and dysfunction. In contrast, the Immunophenoscore (IPS) was 
higher in the low-FAMPI group, implying a better response to immune-checkpoint 
inhibitors. Drug-response modeling also demonstrated distinct sensitivities to 
small-molecule/targeted inhibitors (e.g., IGF1R and HSP90 inhibitors, dasatinib) 
between the FAMPI risk groups, supporting the use of FAMPI in guiding treatment 
choices. Overall, FAMPI is a reliable prognostic classifi er and a potential indicator 
for forecasting treatment outcomes in BLCA, offering molecular insights for 
personalized strategies for treatment.
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INTRODUCTION
Bladder Cancer (BLCA) is among the most 

common malignancies of the urinary system 
and is widely recognized for its strong tendency 
toward recurrence and metastasis. Its global 
incidence and mortality remain elevated, with 
a signifi cantly greater prevalence in males 
than in females [1,2]. Urothelial carcinoma, 
squamous cell carcinoma, and adenocarcinoma 
make up the majority of BLCA, with Urothelial 
Bladder Cancer (UBC) being the most frequent, 
representing more than 90% of cases [3]. Major 
risk factors for BLCA include cigarette smoking, 
chronic exposure to chemical carcinogens, and 
chronic cystitis [4]. Although early-stage BLCA 
can be diagnosed by urinalysis and cystoscopy 
and treated with surgery, chemotherapy, or 
radiotherapy [5], some patients are already 
diagnosed with distant metastasis. In addition, 
postoperative recurrence is common, and the 
effi cacy of existing second-line therapies is 
limited, making advanced BLCA particularly 
challenging to treat [6]. Immunotherapy, 
and more specifi cally Immune Checkpoint 
Inhibitors (ICIs), has seen major developments 
in managing BLCA in recent years [7]. However, 
tumor heterogeneity and differences in the 
immune microenvironment lead to considerable 
variation in patient responses, with overall 
response rates remaining unsatisfactory [8].  
These limitations highlight the urgent need 
to explore metabolic pathways such as folate 
metabolism, which may shape both tumor 
biology and the immune microenvironment. 
Hence, it is essential to pinpoint unique and 
cutting-edge molecular biomarkers and to 
establish effective predictive models to guide 
personalized treatment.

Folate metabolism, a central component 
of one-carbon metabolism, is essential for 
nucleotide synthesis, S-Adenosylmethionine 
(SAM) generation, and DNA methylation [9]. 
In normal cells, folate metabolism maintains 
a dynamic balance between nucleic acid 
synthesis and epigenetic regulation. However, 
in tumor cells, this pathway is frequently 
reprogrammed due to genetic mutations, 
enzymatic abnormalities, or altered nutrient 

availability, leading to accelerated DNA 
synthesis, aberrant epigenetic modifi cations, 
and genomic instability [10]. Accumulating 
evidence indicates that aberrant expression 
related to folate metabolism is intimately 
linked to the initiation and the advancement 
of different forms of cancer. Moreover, 
these genes may modulate the immune 
microenvironment of the tumor by adjusting 
immune cell infi ltration and checkpoint 
molecule expression, there by affecting 
responsiveness to immunotherapy [11]. For 
example, high expression of one-carbon/folate 
metabolism-related genes is linked to altered 
immune infi ltration and unfavorable outcomes 
in breast cancer [12]. Similarly, dysregulation 
of FAMGs in colorectal cancer has been linked 
to immunosuppressive microenvironments 
and adverse clinical outcomes [13], suggesting 
that folate metabolism may modulate tumor 
progression through a metabolism–immunity 
axis. However, systematic investigations into 
the prognostic signifi cance, immunological 
associations, and therapeutic potential of 
FAMGs in BLCA remain limited.

To address this defi ciency, we synthesized 
transcriptomic and clinical data from TCGA 
and GEO cohorts and applied machine learning 
strategies to formulate a Folate Metabolism–
Based Prognostic Index (FAMPI). Using FAMPI 
scores, we conducted Patient stratifi cation 
according to FAMPI scores identifi ed distinct 
molecular and clinical subtypes, providing 
new perspectives on the involvement of folate 
metabolism in BLCA progression and immune 
modulation. This research therefore introduces 
an innovative molecular tool for individualized 
therapy and contributes to a deeper mechanistic 
understanding of folate metabolism in bladder 
cancer.

MATERIALS AND METHODS
Dataset collection

I n this investigation, transcriptomic 
sequencing data along with associated clinical 
details for Bladder Cancer (BLCA), encompassing 
both tumor and normal control samples, were 
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obtained from the TCGA database (https://
portal.gdc.cancer.gov/) [14]. The raw sequencing 
data were normalized, and tumor samples 
labeled as “01A” and normal samples labeled 
as “11A” were saved for subsequent analysis. 
An expression matrix was then constructed 
employing protein-coding genes, with tumor 
sample expression normalized against normal 
samples. This matrix was subsequently used as 
the basis for analyzing differential expression 
[15,16]. and model construction.

Differential expression analysis
Expression data normalization was 

performed using the voom function [15]. We 
employed the R package called limma [16] to 
investigate the Differential Expression Of Folate 
Metabolism-Associated Genes (DEFAMGs) 
between tumor (01A) and normal (11A) 
samples. Genes were considered differentially 
expressedif they satisfi ed the conditions of 
|log2FC| being greater than 1 and a p value less 
than 0.05 [16]. To establish a Protein-Protein 
Interaction (PPI) network, signifi cantly altered 
genes were uploaded to the STRING database 
[17]; the resulting network was subsequently 
visualized through Cytoscape (version 3.8.2) 
[18] Using the MCODE plugin [19] in Cytoscape, 
key modules were identifi ed with the following 
parameters: degree cutoff of 2, node score cutoff 
of 0.2, k-core of 2, and a maximum depth of 100. 
Hub DEFAMGs were subsequently identifi ed 
employing fi ve different algorithms such as 
stress, betweenness, radiality, closeness, and 
bottleneck within the “CytoHubba” plugin 
[20]. Finally, using NetworkAnalyst 3.0, 
predictions were made for the transcription 
factors of the signifi cant genes [21] to construct 
a transcription factor–target gene regulatory 
network.

Identification of famgs-associated 
clusters

Cons ensus clustering was performed on 
the expression profi les exhibiting Differential 
Expression Folate Metabolism-Related Genes 
(DEFAMGs) using the R package Consensus 
Cluster Plus [22]. Evaluation of DEFAMG 

expression levels within the TCGA-BLCA 
dataset identifi ed two clusters as optimal, 
dividing all tumor samples into subtypes C1 and 
C2. Survival differences between these subtypes 
were subsequently visualized employing the R 
survival package [23].

Weighted gene co-expression network 
analysis 

To examine folate metabolism-related genes 
with potential key functions in critical modules, 
the R package WGCNA was employed to 
develop a weighted network of the coordinated 
expression of multiple genes [24].Based  on the 
normalized expression matrix, low-expression 
genes and outlier samples were fi rst removed. 
A soft approach was used to build a scale-free 
network threshold approach power selection, 
after which genes were clustered according 
to the Topological Overlap Matrix (TOM) and 
assigned to distinct co-expression modules. 
Correlations between Module Eigengenes (MEs) 
and sample subtypes (C1/C2) were further 
analyzed to identify key modules that were 
strongly associated with specifi c subtypes. We 
also examined the associations between MEs, 
tumor stage, and overall survival, and found 
that the turquoise module showed the strongest 
correlation with the folate-metabolism–
related subtype (cluster2), more advanced 
pathological stage, and poorer prognosis. 
Therefore, the turquoise module was defi ned as 
the hub module for subsequent modeling and 
mechanistic studies.Development of prognostic 
signature

To construct a folate metabolism–related 
prognostic signature, we employed an integrated 
multi-algorithm machine learning pipeline. 
Genes in the turquoise module identifi ed by 
WGCNA were intersected with DEFAMGs, 
yielding 74 candidate genes. Subsequently, 
univariate Cox proportional hazards 
regression was applied to these 74 genes with 
a signifi cance threshold of p < 0.05 to obtain 
candidate prognostic FAMGs. These candidate 
genes were then independently evaluated by 
four machine learning algorithms: LASSO Cox 
regression [25], XGBoost [26], decision tree 
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[27], and random forest [28]. Each algorithm 
produced a gene importance ranking, with 
LASSO using the absolute values of regression 
coeffi cients and the tree-based models using 
feature importance/Gini importance. The 
penalty parameter λ in the LASSO Cox model 
was determined via 10-fold cross-validation. 
To integrate the results of different algorithms 
and reduce bias from any single method, we 
adopted a consensus-ranking strategy: the 
rankings of each gene across the four algorithms 
were min–max normalized and then averaged 
with equal weights to obtain a consensus 
importance score, from which the top 10 genes 
were selected as the core candidate set for 
constructing the prognostic model. These 10 
consensus genes were subsequently entered into 
a multivariate Cox proportional hazards model, 
and stepwise regression was used for variable 
selection. This process ultimately yielded an 
optimal six-gene signature, termed the Folate 
Metabolism–Associated Prognostic Index 
(FAMPI), consisting of SLC19A3, MTHFD1L, 
CAV1, POU5F1, SETBP1, and HSPG2. For each 
patient, the FAMPI risk score was calculated 
as follows: FAMPI score = (coeffi cient₁ × 
expression value₁) + (coeffi cient₂ × expression 
value₂) + … + (coeffi cient₆ × expression value₆), 
where coeffi cient₁–coeffi cient₆ represent the 
multivariate Cox regression coeffi cients for 
SLC19A3, MTHFD1L, CAV1, POU5F1, SETBP1, 
and HSPG2, respectively, and expression 
value₁–expression value₆ denote the normalized 
expression values of these genes.

Development of the nomogram
We employed multivariate Cox regression 

and applying stepwise regression analyses 
to combine characteristics of patients 
with BLCA, including age, gender, clinical 
pathological stage, and FAMPI, to create a 
predictive nomogram [29]. Visualizations 
of the nomogram and calibration plot were 
generated using the rms package [30]. The time 
ROC package was utilized to perform a Receiver 
Operating Characteristic (ROC) analysis for 
patients with BLCA [31]. FAMPI was analyzed 
through correlation and stratifi cation based on 
the specifi ed clinical parameters. Furthermore, 

Decision Curve Analysis (DCA) was used 
to assess the net benefi t of combining the 
nomogram with a model that relies solely on 
clinical characteristics [32].

Gene set enrichment analysis
Potential molecular mechanisms 

distinguishing the high- and low-risk groups, 
as determined by the FAMPI risk model, 
were examined through Gene Set Enrichment 
Analysis (GSEA) conducted with the GSEA 
software (version 4.2.3) [33]. Gene sets from 
hallmark, KEGG, and GO in MSigDB were used 
as references [34-37]. Standard parameters 
were applied according to the GSEA guidelines, 
and signifi cance thresholds were set at FDR 
< 0.25 and NOM p < 0.05 to identify enriched 
pathways.

Tumor immune microenvironment analysis
To evaluate the degree of immune cell 

presence in BLCA patients, the tumor immune 
microenvironment was analyzed using 
ESTIMATE, ssGSEA, and CIBERSORT. The 
immune score, stromal score, and tumor purity 
corresponding to each sample were quantifi ed 
through the ESTIMATE algorithm [38]. The 
comparative abundance of 28 immune cell types 
was gauged via ssGSEA [39]. And the CIBERSORT 
algorithm was harnessed to quantify the 
fractions of 22 immune cell subsets in each 
sample [40]. To explore potential mechanisms 
in the immune microenvironment, disparities 
in immune cell infi ltration between high- and 
low-risk groups delineated by the FAMPI risk 
model were investigated.

Mutation profile analysis
Variat ions in mutation profi les across the 

FAMPI model–defi ned high- and low-risk 
groups were analyzed using mutation data from 
the TCGA-BLCA cohort [41], processed with the 
R package maftools [42]. Mutation frequency 
and waterfall plots were subsequently generated 
for each group. We further compared Tumor 
Mutation Burden (TMB) between the two groups 
[43] to assess mutation level distributions 
across subtypes, thereby elucidating potential 
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molecular mechanisms associated with the 
model.

Identification of the immunotherapy 
efficacy

The Cancer Immunome Atlas (TCIA, https://
tcia.at/home) provided data to gauge how BLCA 
patients might respond to Immune Checkpoint 
Inhibitor (ICI) therapy [44]. The TIDE algorithm 
was employed to simulate anti–PD-1 and anti–
CTLA-4 therapeutic scenarios, estimating 
differences in immunotherapy responses 
between FAMPI model-defi ned high- and 
low-risk groups, thereby providing additional 
insights into immune evasion capacity and 
immunotherapeutic sensitivity [45].

Drug sensitivity analysis
The onc oPredict package in R was developed 

to quantify the chemosensitivity of TCGA-
BLCA patients stratifi ed by FAMPI risk scores, 
aiming to facilitate individualized therapeutic 
strategies [46]. To determine the concentration 
at which inhibition is half-maximal (IC50), the 
oncoPredict package was utilized by aligning 
data on gene expression from patient samples 
with that of cancer cell lines. The Wilcoxon 
rank-sum test was applied to assess differences 
in predicted IC50 values between high- and 
low-risk groups, with a importance threshold of 
p < 0.05 [47]. To enhance the reliability of drug 
sensitivity evaluation, the GSCALite platform 
was additionally utilized, which integrates the 
GDSC, CTRP, and CellMiner datasets (http://
bioinfo.life.hust.edu.cn/GSCA/#/) [48]. Notable 
variations in predicted drug sensitivity were 
observed between groups classifi ed as high-risk 
and low-risk by the FAMPI model. Statistical 
analysis

Survival  curves were generated through the 
Kaplan–Meier method [29]. The Wilcoxon test 
[49] was employed to compare two groups, 
whereas the Kruskal–Wallis test was utilized 
for comparisons among multiple groups. The 
relationships between variables were assessed 
using Spearman’s rank correlation analysis 
[50]. A P value threshold of 0.05 or less defi ned 

statistical signifi cance, and all analyses were 
performed using R software (version 4.1.3).

RESULTS
Identification of differentially expressed 
DEFAMGs-related genes

Through comparison of Tissues from BLCA 
and healthy tissues, we discovered 4,486 
Differentially Expressed Genes (DEGs), of which 
2,120 were up-regulated and 2,366 genes were 
down-regulated in BLCA patients. Intersecting 
these DEGs with Folate Metabolism–Associated 
Genes (FAMGs) yielded 341 overlapping 
genes, which were defi ned as DEFAMGs. 
The volcano plot of DEFAMGs and the Venn 
diagram illustrating the overlap between 
DEGs and FAMGs are shown in fi gures 1A,B. 
The overlapping genes between BLCA-DEGs 
and FAMGs were subjected to PPI network 
construction using the STRING database and 
subsequently illustrated in Cytoscape (v3.8.2), 
resulting in the interaction network shown in 
fi gure 1C. Eight overlapping hub genes (FGF2, 
FGF7, FGF10, IL6, IGF1, VCAM1, STAT3, and 
CXCL12) were identifi ed by employing fi ve 
different algorithms (MCC, EPC, Degree, 
Betweenness, and Closeness) in Cytoscape 
(v3.8.2) (Figures 1D,E). Gene Ontology (GO) 
enrichment analysis revealed that the DEFAMGs 
were primarily related to cellular responses 
to inorganic substances, lipid metabolism, 
xenobiotic stimuli, and cell proliferation 
regulation and phosphorylation (Figures 
1F,G). The marked enrichment of DEFAMGs in 
multiple cancer-related pathways—including 
Pathways in cancer, PI3K–Akt signaling, 
Fanconi anemia, and MicroRNAs in cancer—
was identifi ed through Kyoto Encyclopedia of 
Genes and Genomes (KEGG) analysis (Figure 
1H).

Identification of Clusters related to FAMG-
Related Genes

To stratify the BLCA cohort, we employed 
consensus clustering on the expression patterns 
of the eight overlapping hub DEFAMGs, 
evaluating cluster numbers (k) from 2 to 8. 
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Figure 1 Identifi cation of Differentially Expressed Folate Metabolism-Associated Genes (DEFAMGs). A) This volcano plot depicts the gene 
expression profi les that contrast bladder cancer tissues with adjacent non-cancerous samples. B) Venn diagram showing the intersection 
between BLCA-DEGs and FAMGs. C) STRING was used to generate a PPI network of overlapping genes, which was then visualized with 
Cytoscape. D) A Venn diagram in CytoHubba illustrates the hub genes identifi ed using the algorithms MCC, EPC, Degree, Betweenness, and 
Closeness. E) PPI subnetwork comprising the eight hub genes. F) GO enrichment results for DEFAMGs within Biological Processes (BP). G) 
GO enrichment results for DEFAMGs within Molecular Functions (MF). H) KEGG pathway analysis of DEFAMGs.

As indicated by the Cumulative Distribution 
Function (CDF) curves and the delta area plot, 
the clustering reached optimal stability at k 
= 2, demonstrating strong uniformity within 
clusters and minimal variation between clusters 
(Figures 2A-C). The Kaplan-Meier analysis 
revealed that patients classifi ed into cluster C2 
exhibited a markedly poorer overall survival 
than those in cluster C1 (Figure 2D). According 
to the ESTIMATE algorithm, cluster C2 patients 
showed elevated stromal scores, immune 
scores, and ESTIMATE scores, accompanied 
by a markedly reduced tumor purity compared 
with those in cluster C1 (Figure 2E). According 
to the TIDE algorithm, patients in cluster C2 

exhibited increased TIDE, T-cell impairment 
and rejection metrics (Figure 2F), pointing to 
an increased probability of immune system 
evasion within this subgroup. The ssGSEA 
 analysis revealed distinct patterns of the 
infi ltration of immune cells between the two 
groups, with cluster C2 exhibiting a notably 
higher overall level of immune infi ltration than 
cluster C1 (Figures 2G,H).

Identification of the Hub Module and Genes 
Related to FAMG in Bulk RNA-Seq

To identify FAMG-associated gene modules 
linked to BLCA, a method for examining 
gene co-expression networks with Weighted 
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Figure 2 Identifi cation of clusters related to FAMG-Related Genes. A) The consistency clustering analysis of 8 overlapping center DEFAMGs in 
the TCGA-BLCA cohort (k = 2). B) Color-coded CDF curves illustrating the consensus matrices for every k value. C) Optimal clustering stability 
at k = 2 is indicated by the relative changes in the area under the CDF curves for each k. D) Comparison of Kaplan–Meier overall survival curves 
for patients in clusters C1 and C2. E) Distribution of stromal, immune, and ESTIMATE scores, as well as tumor purity, across patient groups as 
determined by the ESTIMATE algorithm. F) TIDE analysis showing differences in TIDE, T-cell dysfunction, and T-cell rejection scores across 
clusters. G) The distribution of 28 immune-cell subsets across clusters C1 and C2. H) A heatmap displaying the relative abundance of 28 
immune cell subsets assessed with the ssGSEA algorithm.
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Associations (WGCNA) was conducted using the 
TCGA-BLCA cohort. A soft-thresholding power 
of 3 was selected to achieve a network without 
a characteristic scale topology (Figure 3A). 
Eleven co-expression modules were obtained, 
each visualized in a distinct color to represent 
different gene clusters. The turquoise module 
showed the strongest correlation with BLCA 
clusters among all identifi ed modules, with a 
correlation coeffi cient of 0.73 and a p-value less 
than 0.001 (Figures 3B,C). To further explore 
the biological signifi cance, we intersected the 

turquoise module genes with FAMG-DEGs, 
yielding 74 overlapping key genes (Figure 3D). 
Using the expression data of the 74 overlapping 
genes, univariate Cox regression identifi ed 
27 genes as prognostic markers that are 
signifi cantly related to overall survival (Figure 
3E).

Development and validation of the FAMPI
We applied four machine learning 

algorithms-LASSO Cox regression, XGBoost, 
decision tree, and random forest-to further 

Figure 3 Identifi cation of the Hub Module and Genes Related to FAMG in Bulk RNA-Seq. A) Hierarchical clustering dendrogram of genes 
constructed by WGCNA, where different colors represent distinct modules. B) Relationship between Gene Signifi cance (GS) and Module 
Membership (MM) for genes in the turquoise module, visualized in a scatter plot. C) Correlation heatmap between module eigengenes and 
clinical traits in BLCA patients. D) The intersection between the turquoise module genes and FAMG-DEGs, revealing a core set of 74 overlapping 
genes. E) Univariate Cox analysis in the TCGA-BLCA cohort discovered 27 prognostic DEFAMGs.
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screen key prognostic genes from the 27 
prognostic DEFAMGs. Consequently, six 
representative genes (SLC19A3, MTHFD1L, 
CAV1, POU5F1, SETBP1, and HSPG2) were 
identifi ed (Figure 4A). Based on the expression 
patterns and regression coeffi cients of these 
six genes, we established a folate metabolism–
associated prognostic index (FAMPI) as follows: 
FAMPI = (SLC19A3 × 0.43465778) + (MTHFD1L × 
0.22104801) + (CAV1 × –0.11899016) + (POU5F1 
× – 0.12543035) + (SETBP1 × 0.28322608) + 
(HSPG2 × 0.05826853). BLCA patients were 
divided into high and low FAMPI groups based 
on the median FAMPI score. Kaplan-Meier 
survival analysis indicated that patients with 
high FAMPI scores had much worse overall 

survival than those with low scores in both the 
TCGA training cohort (p < 0.001, Figure 4B) and 
the independent GSE13507 validation cohort (p 
= 0.0035, Figure 4C). A prognostic nomogram 
integrating FAMPI with age, gender, and 
clinical stage was established to estimate the 
overall survival probabilities for 1, 3, and 5 
years (Figure 4D). Cox regression analyses, 
encompassing both univariate and multivariate 
models, revealed that FAMPI functions as an 
independent prognostic biomarker in BLCA 
(Figures 4E,F). The calibration plots indicated 
a close agreement between the predicted 
and observed survival outcomes (Figure 4G). 
Moreover, the decision curve analysis illustrated 
that the nomogram provided superior clinical 

Figure 4 Development andʓvalidation ofʓtheʓFAMPI. A) The top 15 genes identifi ed using four machine learning algorithms. B) Kaplan-Meier 
survival plots for the training cohort of TCGA-BLCA. C) Kaplan–Meier survival plots for the independent validation cohort GSE13507. D) 
Construction of the nomogram integrating FAMPI with clinical characteristics. E) Univariate Cox regression analysis. F) Multivariate Cox 
regression analysis. G) Calibration plots of the nomogram predicting 1-, 3-, and 5-year Overall Survival (OS) in the TCGA-BLCA cohort. H) 
Decision Curve Analysis (DCA) illustrating the net clinical benefi t derived from the application of the nomogram compared with conventional 
clinical variables. I) Comparative analysis of the C-index between the nomogram and traditional clinical parameters.
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utility over traditional clinicopathological 
parameters (Figure 4H). In addition, the 
C-index confi rmed its superior discriminative 
performance compared with other evaluated 
models (Figure 4I). Collectively, these results 
highlight that the FAMPI-based nomogram 
represents a reliable and individualized tool for 
prognostic assessment in BLCA patients.

The accuracy of this nomogram’s predictions 
was confi rmed through ROC analysis. In the 
TCGA-BLCA training group, the AUC values 
for overall survival at 1, 3, and 5 years were 
0.73, 0.73, and 0.75, respectively (Figure 5A). 
Consistent fi ndings were obtained in the 
external validation cohort GSE13507, where 

the AUCs reached 0.95, 0.95, and 0.97 (Figure 
5B). As shown in fi gures 5C,D the FAMPI 
distribution, patient survival outcomes, and 
expression patterns of the six FAMPI genes 
varied markedly between the two FAMPI 
subgroups. Among the six genes, MTHFD1L, 
SETBP1, SLC19A3, and HSPG2 showed positive 
coeffi cients and acted as risk factors, whereas 
CAV1 and POU5F1 exhibited negative coeffi cients 
and were associated with a protective effect. In 
the high-FAMPI group, all six genes showed 
signifi cantly altered expression levels compared 
with the low-FAMPI group, suggesting that 
this integrated signature captures a dynamic 
balance between risk-enhancing and protective 

Figure 5 The prognostic value of FAMPI. A) ROC curves illustrating the predictive accuracy of FAMPI for 1-, 3-, and 5-year Overall Survival (OS) 
in the TCGA-BLCA cohort. B) ROC curves depicting the predictive performance of FAMPI for 1-, 3-, and 5-year OS in the independent validation 
cohort GSE13507. C) Distribution of FAMPI scores, patient survival outcomes, and expression patterns of the six FAMPI genes (SLC19A3, 
MTHFD1L, CAV1, SETBP1, HSPG2, and POU5F1) in the TCGA-BLCA cohort. D) Distribution of FAMPI scores, patient survival outcomes, and 
expression patterns of the six FAMPI genes in the GSE13507 cohort.
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genes. This trend was further substantiated in 
the independent validation dataset GSE13507. 
Collectively, these observations demonstrate 
that FAMPI possesses strong predictive 
effi cacy for both short- and long-term survival 
outcomes in BLCA patients.

Clinical Relevance Assessment of the 
FAMPI

Prognostic signifi cance of the FAMPI 
signature in subgroups with distinct clinical 
profi les. Based on survival status, molecular 
cluster classifi cation, risk score, age, gender, 
and pathological stage, patients were 
categorized into different subgroups for 
comparison. The fi ndings indicated that FAMPI 
expression levels were markedly increased in 
non-survivors, in cluster 2, in the high-risk 
group, in individuals older than 60 years, and 
in those at advanced pathological stages III–
IV (Figures 6A-F). Moreover, Kaplan–Meier 
survival analysis consistently demonstrated 
that patients with higher FAMPI scores had 
considerably poorer overall survival than those 

with lower scores across different subgroups, 
including those aged 60 years or younger, those 
older than 60 years, females, males, stages I–II, 
and stages III–IV (Figures 6G-L). Collectively, 
these results underscore that FAMPI functions 
as a robust and stable prognostic biomarker for 
BLCA patients across diverse clinical contexts.

Gene set enrichment and tumor immune 
microenvironment analysis

Gene Set Enrichment Analysis (GSEA) 
was conducted using Gene Ontology (GO) 
terms to explore the biological mechanisms 
that differentiate the two risk groups. The 
analysis revealed that high-risk patients were 
signifi cantly enriched in pathways associated 
with cell growth, cellular response to growth 
factor stimulation, and T-cell activation, 
whereas low-risk patients showed enrichment 
in processes such as amine transport, 
cellular response to nitrogen compounds, 
and homeostatic regulation (Figures 7A,B). 
Considering the close association between 
the risk score and the tumor immune 

Figure 6 Clinical relevance of the FAMPI signature in bladder cancer patients. A-F) Boxplots showing FAMPI score distributions according 
to clinical features: survival status (alive vs., death), molecular cluster (C1 vs., C2), risk group (low- vs., high-risk), age (≤ 60 vs., > 60 years), 
gender (female vs., male), and pathological stage (I-IV). G-L) Kaplan–Meier overall survival curves comparing high- and low-risk groups within 
subgroups stratifi ed by age (≤ 60 vs., > 60 years), gender (female vs. male), and pathological stage (I-II vs., III-IV).
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microenvironment, subsequent immune 
evaluation was conducted to assess infi ltration 
using multiple computational algorithms. The 
high-risk cohort demonstrated signifi cantly 
elevated immune, stromal, and ESTIMATE 
scores, while exhibiting reduced tumor purity 
in comparison to those in the low-risk cohort 
(Figure 7C). Further immune profi ling revealed 
that most immune cell types differed markedly 
between the two groups, with the high-risk 
cohort showing elevated infi ltration of a wide 
range of immune cells (Figure 7D). Moreover, 
correlation analysis revealed signifi cant 
covariation between the six FAMPI genes and 
levels of immune cell infi ltration, highlighting 
a dynamic interplay between the expression 

of these genes and the composition of the 
tumor immune landscape (Figure 7E). These 
fi ndings imply that the convergence of aberrant 
biological processes and a distinctive immune 
microenvironment collectively drives the 
adverse clinical outcomes in high-risk patients. 

Genomic variation landscape
To characterize mutational distinctions 

between FAMPI categories, we compared the 
somatic mutation landscapes of the high- 
and low-FAMPI cohorts. TP53, TTN, KMT2D, 
ARID1A, and MUC16 were the top recurrently 
altered genes in both cohorts, with a slightly 
elevated mutation frequency in the high-
FAMPI cohort. (Figures 8A,B). Analysis of co-

Figure 7 Gene set enrichment analysis and tumor immune microenvironment characteristics between FAMPI-defi ned risk groups. A-B) GSEA 
based on GO terms comparing high- and low-risk groups. C) Violin plots showing differences in ESTIMATE scores, immune scores, stromal 
scores, and tumor purity between the two risk groups. D) Boxplots of the 28 tumor-infi ltrating immune cell subsets in high- and low-risk groups. 
E) Heatmap showing correlations between the six FAMPI genes and tumor-infi ltrating immune cell populations.
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occurrence and mutual exclusivity revealed that 
most mutations exhibited cooperative patterns, 
while only a few showed exclusionary effects. 
Specifi cally, KMT2A–TP53 and ARID1A–RB1 
mutations tended to co-occur in the high-
FAMPI group, whereas mutations in MUC16 
and TTN showed a moderate tendency for co-
occurrence in the low-FAMPI cohort (Figures 
8C,D). Additionally, mutation profi ling of the 
six FAMPI genes (SLC19A3, MTHFD1L, CAV1, 
SETBP1, HSPG2, and POU5F1) demonstrated 
that most alterations were dominated by 
missense mutations, with occasional nonsense 
and splice site variants (Figure 8E). 

Prediction of immunotherapy efficacy and 
immune function

Immune Checkpoint Inhibitors (ICIs) have 
demonstrated remarkable therapeutic effi cacy 
across multiple malignancies. In this analysis, 
patients classifi ed in the high-FAMPI cohort 
displayed signifi cantly elevated TIDE values and 
enhanced T-cell exclusion indices. In contrast, 

T-cell dysfunction and MSI levels showed no 
notable differences between the subgroups, 
implying an increased potential for immune 
escape in individuals with high-FAMPI BLCA 
(Figure 9A). Similarly, IPS-based assessment 
indicated an absence of notable differences 
across the majority of immune subtypes 
between the high- and low-FAMPI cohorts 
(Figure 9B). Moreover, ssGSEA assessment 
revealed that several immune-associated 
pathways—including MHC class I antigen 
presentation, APC co-stimulatory signaling, 
immune checkpoint regulation, and T-cell 
activation—were more prominently active 
within the high-FAMPI cohort (Figure 9C). 
Correlation analysis further demonstrated that 
the six representative prognostic genes were 
signifi cantly and positively associated with 
the majority of immune checkpoint molecules 
(Figure 9D). Additionally, the majority of 
immune checkpoint molecules—including 
CD274 (PD-L1), PDCD1 (PD-1), CTLA4, LAG3, 

Figure 8 Genomic variation landscape between the two FAMPI groups. Waterfall plots illustrating somatic mutation profi les in the low-FAMPI 
group (A) and the high-FAMPI group (B). Heatmaps showing mutually exclusive and co-occurring gene mutations in the low-FAMPI group (C) 
and the high-FAMPI group (D). (E) Mutation frequencies of six representative FAMPI-related genes.
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TIGIT, HAVCR2 (TIM-3), CD276 (B7-H3), 
and ICOS—were markedly elevated in the 
high-FAMPI cohort, while a few, for instance 
TMIGD2, showed no notable differences (Figure 
9E).

Drug Sensitivity Analysis
To further explore the clinical relevance of 

the six FAMPI-associated prognostic genes 
in facilitating personalized therapy for BLCA, 
we assessed the responsiveness of frequently 
applied chemotherapeutic agents within the 
high- and low-FAMPI cohorts. According 
to the IC50 results, individuals in the high-
FAMPI group displayed markedly reduced IC50 
values for several standard chemotherapeutic 
agents, suggesting that the FAMPI score may 
serve as a predictive marker of chemotherapy 

responsiveness in BLCA patients (Figure 10A). 
To further investigate the association between 
the expression profi les of the six signifi cant 
prognostic genes and drug sensitivity, we 
employed the CellMiner platform for analysis. 
Correlation plots of the fi ve drugs showing the 
most pronounced correlations indicated that 
positive correlations were linked to elevated 
gene expression and enhanced drug sensitivity, 
while negative correlations implied greater 
drug resistance (Figure 10B). In addition, data 
obtained from the GDSC database further 
supported that expression levels of certain 
characteristic genes were positively correlated 
with multiple drug sensitivities, whereas others 
showed negative correlations, reinforcing their 
potential roles as biomarkers for chemotherapy 
response in BLCA (Figure 10C).

Figure 9 Prediction of immunotherapy effi  cacy and immune function. A) Comparisons of TIDE, T-cell dysfunction, T-cell exclusion, and MSI 
scores between the high- and low-FAMPI groups. B) IPS scores across different subtypes in the two FAMPI groups. C) Activities of immune-
associated pathways showing signifi cant differences between the high- and low-FAMPI cohorts based on ssGSEA. D) Correlations between 
six representative prognostic genes and immune checkpoint regulators. E) Immune checkpoint–related gene expression patterns across 
high- and low-FAMPI cohorts.
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DISCUSSION
Folate metabolism  is essential for DNA 

synthesis and methylation, thereby affecting 
tumor cell proliferation and therapeutic 
response [51,52]. Clinically, DHFR and TYMS 
have become classical antimetabolite targets, 
highlighting the translational potential of Folate 
Metabolism-Associated Genes (FAMGs) [53]. In 
this study, we systematically profi led Folate 
Metabolism–Associated Genes (FAMGs) in 

bladder cancer (BLCA). Differential expression 
analysis identifi ed 341 DEFAMGs (the 
intersection of BLCA-DEGs and FAMGs, Figure 
1B), among which 194 were upregulated and 
147 were downregulated. Consensus clustering 
divided patients into two molecular subtypes, 
among which Cluster 1 exhibited the highest 
tumor purity and the lowest immune cell 
infi ltration, stromal content, and ESTIMATE 
index, together with the highest T-cell exclusion 

Figure 10 Drug sensitivity analysis between the two FAMPI groups. A) Illustrates the IC50 comparison of frequently applied anticancer drugs in 
the high- and low-FAMPI subgroups. B) Presents the association between the expression profi les of pivotal characteristic genes in the FAMPI 
model and drug sensitivity, with bar plots representing the top fi ve drugs most strongly associated with each gene. C) Presents a correlation 
heatmap linking the six FAMPI genes of the FAMPI model to drug sensitivity data obtained from the GDSC database.
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and impairment scores, and reduced MSI. 
These fi ndings indicate an immunologically 
“cold” but immune-evasive phenotype. This 
is consistent with prior evidence that MTHFD2 
can upregulate CD274 expression through 
IFN- signaling [54], supporting the concept 
that metabolic reprogramming can shape the 
immune microenvironment in BLCA.

To investigate the molecular factors 
contributing to these phenotypic differences, 
we applied a Weighted Gene Co-Expression 
Network Approach (WGCNA). The turquoise 
module, which showed the strongest negative 
correlation with Cluster 1, was identifi ed as 
the most clinically relevant. From this module, 
we refi ned 74 core genes overlapping with 
DEFAMGs. Subsequent univariate Cox regression 
and machine learning analyses identifi ed six 
key genes (SLC19A3, MTHFD1L, SETBP1, CAV1, 
POU5F1 and HSPG2) to construct the FAMPI 
risk signature. These genes encompassed both 
oncogenic drivers and potential protective 
factors, highlighting a balanced interplay 
between metabolism, immunity, and prognosis. 
For instance, MTHFD1L, a mitochondrial one-
carbon enzyme, has been recognized as a 
poor prognostic indicator in colorectal cancer 
[55,56] and hepatocellular carcinoma [57], and 
we verifi ed its contribution as a risk factor in 
BLCA [58]. Similarly, SETBP1 is a recognized 
oncogene promoting proliferation [59], 
signifi cantly overexpressed in the high-risk 
group. Conversely, CAV1, known for its context-
dependent dual roles [60], showed a protective 
effect in our model. Intriguingly, POU5F1 
(Oct4), though generally linked to stemness and 
aggressiveness, acted as a favorable factor here, 
in line with tumor-type–specifi c heterogeneity 
[61]. Finally, SLC19A3, though not a classical 
folate transporter, has been implicated in drug 
sensitivity [62], suggesting a role in modulating 
therapeutic response in BLCA. In addition, 
HSPG2, encoding perlecan—a key heparan 
sulfate proteoglycan within the extracellular 
matrix—has been associated with tumor 
invasion and angiogenic processes [63], and 
was recognized as a risk factor in our model.

From a clinical perspective, FAMPI 
demonstrated superior prognostic predictive 
performance compared with traditional clinical 
features across both TCGA and GSE13507 
cohorts. Notably, high-FAMPI patients 
exhibited an immunosuppressive Tumor 
Microenvironment (TME) with unregulated 
immune Checkpoints (CD274, CTLA4) and 
higher Immunophenoscores (IPS). Despite 
low-FAMPI patients having higher TIDE scores, 
suggesting immune dysfunction, this does not 
confl ict with our conclusion. TIDE primarily 
refl ects T-cell dysfunction or exclusion, 
while IPS and immune checkpoint expression 
represent an “infl amed but suppressed” state 
[64]. Clinically, such a state is often associated 
with greater sensitivity to Immune Checkpoint 
Inhibitors (ICIs) [65]. Therefore, FAMPI not 
only stratifi es prognosis but also predicts 
immunotherapy benefi t, offering value for 
patient selection. In addition, differential drug 
sensitivity analyses suggested that FAMPI may 
guide chemotherapy choice, further supporting 
its clinical utility.

Mechanistically, pathway enrichment 
analysis suggested that the high-risk group 
exhibited notable enrichment of TGF-β, BMP, and 
PI3K–Akt signaling cascades, which participate 
in immune suppression, fi broblast activation, 
and tumor growth. The enrichment of TGF-β 
signaling in particular provides a plausible 
explanation for the immunosuppressive 
phenotype [66]. Conversely, the low-risk 
group demonstrated marked enrichment in 
core metabolic pathways, notably ribosome 
biogenesis and oxidative phosphorylation. 
Furthermore, distinct mutational patterns 
between groups—including alterations in 
Chromatin Remodeling–Related Genes (e.g., 
KMT2A, CREBBP) that were more frequently 
observed within the high-risk cohort, whereas 
alterations such as MACF1 mutations were 
identifi ed in the low-risk cohort—suggest 
that folate metabolic reprogramming may 
collaborate with genomic instability to drive 
divergent BLCA trajectories [67]. Collectively, 
these fi ndings elucidate the mechanistic basis 
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underlying the observed immunological and 
clinical heterogeneity.

Importantly, compared with previously 
reported immune or metabolism-based models 
[68,69], FAMPI represents the fi rst folate 
metabolism–focused prognostic index in BLCA. 
It robustly integrates metabolic reprogramming, 
immune microenvironment characteristics, 
somatic mutation landscapes, and therapeutic 
response prediction. Thus, FAMPI functions 
not merely as a prognostic marker but also as 
a promising instrument for decision support in 
guiding precision treatment strategies, thereby 
promoting advances in personalized oncology.

In addition, the predictive performance 
of FAMPI for overall survival was strongly 
validated. Within the TCGA dataset, the AUCs for 
1-, 3-, and 5-year overall survival reached 0.77, 
0.75, and 0.73, respectively. In the independent 
GSE13507 dataset, the corresponding AUCs 
reached 0.95, 0.93, and 0.91, confi rming the 
strong robustness and reproducibility of the 
model. Furthermore, the drug sensitivity 
analysis uncovered signifi cant variations in 
therapeutic responses to commonly used 
chemotherapeutic agents across the different 
risk groups. Notably, high expression of 
SETBP1 was consistently associated with 
poorer outcomes and chemotherapy resistance. 
Interestingly, For POU5F1, although it acted as 
a favorable prognostic factor within the FAMPI 
model, its high expression also correlated 
with distinct drug response patterns. This 
suggests that the role of POU5F1 may be 
context-dependent, refl ecting tumor type–
specifi c heterogeneity and potentially divergent 
mechanisms in prognosis versus therapy 
sensitivity. These fi ndings not only reinforce the 
clinical value of FAMPI in prognostic prediction 
but also highlight its potential as a supportive 
tool for guiding individualized chemotherapy 
selection.

However, the conclusions of this study are 
mainly based on data analysis from public 
databases, and several limitations should be 
noted: (1) the sample size collected in this 

study was limited, and additional clinical 
samples from larger cohorts with expanded 
study populations are required to enhance the 
credibility of the fi ndings. (2) The transcriptomic 
and clinical datasets of BLCA patients in this 
study were primarily obtained from the TCGA 
and GEO public databases, which may introduce 
differences between datasets; thus, further 
efforts are needed to address potential data bias 
and improve the reliability of the analysis. (3) 
The analytical results of this study still require 
validation in broader patient populations, and 
additional molecular experiments are necessary 
to further elucidate the molecular mechanisms 
of FAMPI in BLCA patients. (4) The drug 
sensitivity profi les associated with the FAMPI 
signature were inferred computationally using 
in silico prediction tools based on transcriptomic 
data; these fi ndings must be corroborated 
by functional assays in BLCA cell lines and 
other experimental models before they can be 
translated into clinical decision-making.

CONCLUSION
In summary, the FA MPI model established 

and validated herein can serve not merely as 
a potential molecular classifi er for individuals 
with bladder cancer but also as a dependable 
indicator of therapeutic responses to 
chemotherapy and immunotherapy. Moreover, 
it is expected to provide valuable insights 
for personalized clinical management and 
treatment decision-making in BLCA.
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