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INTRODUCTION
Coronary Artery Disease (CAD) comprises a series of anomalies, 

which includes angina, infarction and cardiac death, among others 
[1]. Th e main risk factors related to CADs include diabetes [2-5], 
sedentary lifestyle [6], high blood pressure [7], obesity [4], alcohol 
consumption [8], smoking [3] and cholesterol [5]. Th e onset of CADs 
occurs because the blood with oxygen and nutrients are unable to 
reach heart muscles due to fatty deposits inside the arterial walls [9]. 
CAD is a health problem worldwide, aff ecting over 110 million people 
around the globe and leading to 9 million deaths each year [10,11].

Some of the risk factors for CADS, such as, high blood cholesterol, 
hypertension, diabetes and smoking may lead to endothelial 
dysfunction, and consequently to a pro-inflammatory and a pro-
thrombotic endothelial state [12,13]. Endothelial dysfunction may be 
associated with genetic polymorphisms that take place in genes and 
proteins with essential roles in maintaining endothelial homeostasis 
[14-17]. Among these genes, eNOS (endothelial Nitric Oxide 
Synthase) is responsible for the synthesis of nitric oxide, which is a 
lipophilic substance highly active in a great variety of physiological 
processes [18-21]. Th e nitric oxide produced by eNOS protein 
activity regulates the vascular tone [22], cell cycle progression [23,24], 
immune system cell adhesion [25,26] and platelet aggregation [27,28].

Th e eNOS protein comprises four main domains (Table 1) [29]. 
Th e N-terminal oxygenase domain is featured by heme-thiolate 
proteins and has a role in the activity of the protein. Th is family of 
hemoprotein contains a thiolate anion as the axial ligand to the heme 
group [30]. Th e fl avodoxin-like domain has a Flavin Mononucleotide 
(FMN)-binding site, which is related to electron transfer reactions. 
Th is domain is important to enable the nitric oxide production, 
which has a role as a messenger molecule within the metabolism 
[31]. Th e FAD binding domain regulates the exchange of reducing 
equivalents between electron owners [32] and the NAD binding 
domain regulates the electron fl ux for ATP synthase and reducing 
power of cells undergoing active glycolysis [33].

Several other proteins infl uence endothelial metabolism and 
they interact with eNOS in order to complement its function and 
guarantee vascular stability. NOSTRIN (Nitric Oxide Synthase 
Traffi  cking) [34], cdc37 (cell division cycle 37) [35], calmodulin [36-
39], GCDH (Glutaryl-CoA Dehydrogenase) [35] and SIRT 1 (sirtuin 

1) [40] interact with eNOs in order to complement its function and 
those Protein-Protein Interactions (PPIs) regulate several vascular 
functions. Dysfunction aff ecting any of those proteins, their structures 
or the PPI patterns they establish may increase CAD susceptibility 
[41-44]. 

Here, we show the involvement of protein-protein interactions of 
eNOS and genetic polymorphisms in coronary artery disease by an 
in silico approach. We highlight hot spots residues on the interaction 
interface between eNOS and the proteins NOSTRIN, cdc37 and 
calmodulin 1 and polymorphisms that may alter structure, function 
and PPI patterns between them. Th e complex and dynamic metabolic 
processes engaged by those proteins may infl uence CADs onset, 
progression and prognosis.

MATERIALS AND METHODS
Briefl y, we used the I-TASSER server in order to model the eNOS 

protein. A series of templates were used in order to fi nd homologous 
proteins available in the PDB (protein databank) and to build up a 
3-D structure that represents a stable conformation of the protein. 
Th e most common eNOs, NOSTRIN, cdc37 and calmodulin 1 
polymorphisms related to CAD were retrieved from dbSNP (the 
single nucleotide polymorphism database). Th e interaction interface 
was determined by the ClusPro server and all the 3-D structures were 
visualized and analyzed by PyMol (https://pymol.org/2/). Amino acid 
residues were classifi ed into hot spots through the KFC2 server [45].

RESULTS AND DISCUSSION
The interaction between eNOS and NOSTRIN

Th e main function of NOSTRIN is the intracellular traffi  cking 
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Table 1: Features of the eNOS protein domains

Family Description ID Bit Scorea E-valueb

NO_synthase oxygenase domain - 605.0 4.2e - 182

Flavodoxin Flavodoxin CL0042 175.6 5.7e - 52

FAD_binding FAD binding domain CL0076 275.7 2.4e - 82

NAD_binding
Oxidoreductase 

domain
CL0091 66.1 3.6e - 18

aNormalized score expressed in bits that estimate the magnitude of the 
alignment.
bExpectation value, which is a correction of the p-value for multiple testing
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of eNOS between diff erent compartments. NOSTRIN catalyzes the 
detachment of eNOS from the plasma membrane and transport the 
protein to several cellular compartments [46]. eNOS traffi  cking is 
essential to maintain normal levels of nitric oxide within intracellular 
compartments. Th e stimulation of endothelial cells leads to the 
transportation of eNOS in vesicles via NOSTRIN activity [47] and by 
endocytosis [34].

Figure 1 shows the interaction interface between eNOS and 
NOSTRIN through an in silico approach. Th e 3-D structure of 
NOSTRIN in fi gure 1 shows only the SH3 domain, which is the 
part of the protein that interacts with eNOS. Figure 1 also shows 
the hot spots predicted in the interaction interface. We found 
eight hot spots residues (Table 2) that contribute to the interaction 
between the proteins and also to the stabilization of the complex, as 
they are energetically favored residues [45]. Among those, fi ve are 
polymorphic residues and may alter slightly the protein structure, the 
effi  ciency of interaction and fi nally disrupt eNOS transportation to 
intracellular compartments, reducing the availability of nitric oxide 
for the cell signaling and general metabolism. Several polymorphism 
linked to eNOs have been pointed as an increase to CAD susceptibility 
[15,48-50].

The interaction between eNOS and calmodulin 1

Calmodulin 1 belongs to the calcium-modulated protein family. 
Th eir localization is mainly in the cytosol or attached to membranes 
and they are regulated the levels of calcium in cells and tissues, taking 
part in processes such as cell cycle progression, growth, movement, 
and signal pathways. Calmodulin 1 also regulates eNOS activity in 
endothelial cells in the presence of cellular stressors. In addition, 
eNOS is more expressed if calcium is available, then the protein 
dissociates from membranes and is phosphorylated in the cytosol 
[51], leading to local vasodilatation [52]. Th e interaction between 
eNOS and calmodulin can be modulated by polypeptides, drugs 
and other small molecules [53]. Th is is important regarding CAD 
therapeutics and prognostic, once alterations in the binding energy 
between those proteins can increase susceptibility to atherosclerosis 
[54], for example.

Figure 2 shows the interaction between eNOS and calmodulin 1 
binding motif. Th is interaction plays an important role in regulating 
eNOS activity as a response to cellular stress. Anomalies may rise 
when alterations within the coding sequence of any of the mentioned 
genes and proteins leading to onset of vascular diseases. We found 
seven hot spot residues (Table 3) in the interaction interface of 
eNOS and calmodulin. Many of those residues are polymorphic and 
susceptible to mutation; on the other hand, several of those possible 
SNPs (single nucleotide polymorphisms) are synonymous and have 
no eff ect in the coding sequence of eNOS or calmodulin 1. Figure 2 
also shows a couple of hot spot residues on the interaction interface 
of eNOS and calmodulin. Th e design of modulator peptides is an 
alternative for treatment of CAD and the development of molecular 
markers to identify susceptible patients at earlier stages of the disease.

The interaction between eNOS and cdc37

Th e protein cdc37 is a chaperone with a role in signal transduction; 
it interacts with protein partners in order to stabilize their structure so 
they can perform their activities properly. Th is is essential for eNOS 
to be active and disruption or reduction of the interaction effi  ciency 
may lead to several diseases, including CAD [55,56], diabetes [57] 
and cancer [58]. Chaperones and cdc family proteins have been 

Figure 1: The interaction between eNOS and NOSTRIN. The eNOS 
protein is the biggest structure represented by pink while the NOSTRIN 
is represented by green. The interaction interface is represented by the 
color gray and the red regions are predicted hot spots. Single Nucleotide 
Polymorphisms (SNPs) or mutations in these residues may increase the 
susceptibility to CAD.

Table 2: Hot spots predicted for the interaction between eNOS and NOSTRIN.

Protein Residue Score Aa Score Bb SNP

eNOS ARG 70 0.93 0.10 LEU, HYS, CYS

eNOS LEU 340 0.85 0.27 MET

eNOS ARG 474 0.52 0.03 LEU, HYS, CYS

NOSTRIN TYR 14 0.40 0.10 Synonymous

NOSTRIN PHE 16 0.37 0.22 -

NOSTRIN GLU 39 0.77 0.11 -

NOSTRIN TRP 42 1.33 0.31 ASP

NOSTRIN TYR 58 0.94 0.30 -
aHot spot scores according to structure characteristics
bHot spot scores according to chemical characteristics of interacting residues

Figure 2: The interaction between eNOS and calmodulin 1. The eNOS 
protein is represented by pink while the camodulin 1 is represented by green. 
The interaction interface is represented by the color gray and the red regions 
are predicted hot spots. Calmodulin 1 regulates eNOS activity in endothelial 
cells as a response to cellular stress. The eNOS protein is more expressed 
when calcium is released, the protein detaches from membranes and is 
transported to cytosol leading to local vasodilatation.
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implicated in diseases related to infl ammation (atheromatous 
plaques, for example) and immune response [59]. Genes coding for 
proteins related to infl ammatory processes, such as eNOS and cdc37, 
are potentially candidates for biomarkers in order to assess the risk 
of CADs onset and progression. In addition, interactions of such 
genes could be modulated by synthetic or natural small molecules for 
therapeutics purposes [60-62].

We found ten hot spot residues (Table 4) on the interaction 
interface of eNOS and cdc37 (Figure 3) and among those residues, 
four are likely to carry SNPs and infl uence the susceptibility to CADs. 
Th e cdc37 protein regulates eNOS activity and prevent promiscuous 
eNOS activity [63]. Table 4 highlights the predicted hot spots and 
SNPs that may take place within this region, such alterations in either 
proteins, could lead to irregular binding or no binding at all and 
increase the predisposition to vascular diseases.

CONCLUDING REMARKS
CAD is costly and a complex public health problem around the 

globe. It is the disease with the highest rates of death worldwide. 
Family history of CADs is an indication for genetic counseling and 
genetic testing. Several genes such eNOS, NOSTRIN, cdc37 and 
calmodulin are potential candidates as genetic markers of vascular 
diseases. Knowledge on SNPs that increase susceptibility to CADs 
may shed new light on methods of prevention, diagnosis, treatment, 
genetic counseling and prognosis of CADs. PPIs are present in every 
compartment of a cell and they are responsible for a proper function 
of proteins, regulating cell cycle, cell homeostasis and disease onset 
and progression. Here, we hypothesize that PPIs could be one of 
the explanations for CAD susceptibility. We have shown an in silico 
approach of interaction between eNOS and the CAD-related proteins 

NOSTRIN, cdc37 and calmodulin 1 through the identifi cation of hot 
spots within the interface of interaction between eNOS and target 
proteins. We also pointed that several SNPs identifi ed in clinical 
practice and deposited on dbSNP were related to the predicted hot 
spots and could increase susceptibility to CAD signifi cantly due 
to alteration of eNOS and partner proteins conformation or loss 
of function due to impairment of the PPIs they perform. Further 
studies need to be performed and through the hot spots presented 
here, eNOS, NOSTRIN, cdc37 and calmodulin 1 could be used as 
molecular markers and peptides PPI modulator could be design and 
tested as alternative therapies against CAD progression.
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