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Introduction
The causes of myocardial infarction are coronary spasm, 

spontaneous clot formation, dislodgment of atherosclerotic 
plaques in major coronary arteries, stent thrombosis, thrombi from 
atrial fibrillation, thrombi from cardiopulmonary bypass, etc [1]. 
Percutaneous Coronary Intervention (PCI) or Coronary Artery 
Bypass Grafting (CABG) procedures have been used to vascularize 
obstructed major coronary arteries, reduce myocardial infarct 
size; improve Left Ventricular (LV) function and clinical outcome. 
Paradoxically, revascularization of infarct-related coronary artery 
could produce further myocardial damage to previously undamaged 
myocardium by a phenomenon called reperfusion injury or 
coronary microembolization [2-4]. Thus, coronary intervention can 
protect and harm the heart. Several studies have emphasized the 
ubiquitous occurrence of distal embolization of atheromatous and 
thrombotic debris after coronary intervention, potentially resulting 
in microcirculatory dysfunction, abnormal myocardial metabolism, 
and additional necrosis [5-7]. Cuculi, et al. [4] showed that 5 - 30% 
of the patients suffered from coronary embolization after PCI and 
the effects on myocardium varied from non-symptomatic to sudden 
death [8-10]. A recent SYNTAX trial showed that the rates of death 
and myocardial infarction at 1 year were similar between patients 
who underwent CABG and those who underwent PCI; whereas the 
rate of stroke was increased in the CABG group and the rate of repeat 
revascularization was increased in the PCI group [11].

Delayed contrast enhanced MRI (DE-MRI) sequences can 
reliably measure the size and transmurality of acute and chronic 
Myocardial Infarct (MI). However, these imaging sequences have 
in many cases limitation in visualizing myocardial microinfarct 
since the level of signal enhancement and thresholding methods to 
delineate micro-damage are insufficient, thus DE-MRI should be 
used with other imaging biometrics, such as cardiac perfusion and 
function. This review focuses on clinical and preclinical studies 
that addressed coronary micro-emboli and their effects on cardiac 
function, perfusion and viability.

Coronary emboli

Coronary embolization describes a process where aggregated 
dislodged platelets, atherothrombotic debris and released vasoactive 
substances induce micro vascular obstruction, oxidative stress, 

inflammation and patchy microinfarction. Troncoso, et al. [12] 
found an association between coronary artery disease and cerebral 
microinfarct. Most autopsy-based studies discussed to this point 
are cross-sectional and therefore limited in their ability to explore 
the incidence and consequences of microinfarct. An autopsy-based 
study, however, showed that coronary embolization occurred 3 to 4 
times more often in the left coronary artery than in the right, and in 
the Left Anterior Descending (LAD) than in the left circumflex [13]. 
It is reasonable to surmise that location and number of microinfarct 
determine the clinical impact. The middle range of coronary 
microemboli retrieved after coronary intervention was 47-2503 μm. 

Cardiac injury biomarkers

Cardiac injury occurs when there is disruption of myocyte mem-
brane integrity, that results in the loss of intracellular constituents, 
such as creatine kinase, troponin, myoglobin, heart-type fatty acid 
binding protein, and lactate dehydrogenase. In an experimental study 
[14], investigators found that the increases in creatine-kinase MB and 
troponin I depend on the volume of microemboli and time of blood 
sampling.

Cardiologists documented the increase of plasma cardiac injury 
biomarkers after PCI [15,16]. Creatine kinase and troponin elevations 
in the blood are indicative of myocardial injury in patients. However, 
the elevation of creatine kinase and troponin after microinfarction 
can be undetected due to their dilution in the large sinus blood flow. 
A large meta-analysis of 23, 230 patients with stable or unstable 
angina undergoing PCI with follow-up for 6-34 months compared 
with the data from healthy volunteers showed a close relationship 
between creatine kinase - MB concentration and mortality rate, even 
at a minor increase of creatine kinase - MB 1–3x conferring a relative 
risk of death of 1.5 (95%) [17].

Non-invasive imaging

Ischemic heart disease can be detected directly on Positron 
Emission Tomography (PET) and Single-Photon Emission Computed 
Tomography (SPECT), MRI, Computed Tomography (CT), and 
indirectly on ECG, cardiac injury biomarkers, ventriculography, 
and echocardiography. PET, SPECT, CT and echocardiography 
have been the clinical modalities for assessing myocardial perfusion 
and viability, while intravascular imaging methods, such as Optical 
Coherence Tomography (OCT) and Intravascular Ultrasound (IVUS), 
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characterize plaque composition (large necrotic cores, high plaque 
volume, thin-capped fibroatheroma) [18-20]. Echocardiography is 
the most commonly used clinical method for quantification of global 
and regional LV function in patients with ischemic heart disease 
[21]. Investigators also used 2D speckle-tracking images to measure 
regional strain and strain rate [22] as well as LV remodeling [23] and 
reverse remodeling [24].

The variability of patient populations, micro-emboli volume/size, 
territory of feeding vessels and cardiac motion are major limitations 
in visualizing and quantifying microinfarct on MRI or drawing 
sound conclusions on the deleterious effects of micro-emboli. Thus, 
investigators found that preclinical animal models are suitable for 
resolving the above complexities of myocardial microinfarction 
[14,25-28].

Coronary microemboli on doppler

Porto, et al. [29-31] were the first to count coronary micro-
emboli in real-time during PCI using High Intensity Transient 
Signals (HITS) derived from Doppler guide wire. The gold standard 
method of detecting the passage of emboli is the audible detection 
of the sudden “chirp” or “moan” produced by emboli as well as the 
visual detection of the time-frequency representation (spectrogram) 
generated on the Doppler screen. This method is based on calculating 
the energy from the spectrogram and applying constant thresholds 
to pick up the emboli. Clinical and preclinical studies shed light 
on the complex relationship between coronary interventions and 
myocardial microinfarct. Many studies linked coronary micro-
emboli myocardial contractile dysfunction, malignant arrhythmias, 
perfusion deficits and coronary reserve impairment [5,9,29,30]. To the 
best of our knowledge, the detection of circulating coronary micro-
emboli, using MRI, has not been performed and very challenging at 
the present time.

Myocardial microinfarct on MRI

Myocardial microinfarct are very small infarcts resulted from 
obstruction of coronary capillaries, arterioles, or small arteries. Thus, 
the small average size highlights the challenges in designing imaging 
methods for detecting microinfarct. Given a mean diameter of <1 
mm3, the size of most microinfarct is below the lower limit of spatial 
resolution (approximately 1 mm3) for 1.5T and 3.0T MRI scanners 
used in clinical practice. Therefore, increased spatial resolution is 
needed for MRI to be able to detect microinfarct and differentiate 
them from other lesions. Increasing signal to noise ratio, using 
high field strengths (7.0T), might improve the contrast between 
microinfarct and viable tissue and thus aid visual detection. 

Microinfarct are visible as hyper intense speckles (salt and pepper) 
on delayed contrast enhanced MR images (DE-MRI). Kwong, et al. 
[32] reported that even small infarct (1.4% of LV mass) identified on 
DE-MRI portended a > sevenfold increased risk for major adverse 
cardiac events. Bodi, et al. [24] found that assessment of infarct and 
micro vascular obstruction zone within the infarct on MRI soon after 
STEMI enabled the prediction of reverse remodeling.

Myocardial viability

Dynamic and delayed contrast enhanced MRI has used for 
demonstration of the success of revascularization after PCI. Regions 
with still impaired blood flow appear hypo enhanced (micro vascular 
obstruction zone), while infarcted regions appear hyper enhanced. In 
these cases, remote myocardium is moderately enhanced on dynamic 
MR imaging. This technique is based on measuring the delivery of 

MR contrast media to the myocardium during and after the first pass 
following a bolus injection using T1-weighted imaging sequences. 
Inversion recovery viability techniques, such as gradient echo and 
modified Look-Locker were used for visualization and quantification 
of myocardial infarct and micro vascular obstruction zone.

In an experimental MRI study, investigators found a positive 
correlation between micro-emboli volumes and myocardial infarct 
sizes [33]. MRI also demonstrated a large variation in the size of 
myocardial infarct after PCI (0.7-12.2 g or 0.4-6.0% LV) in patients 
[15]. In some cases microinfarct co-exist with other pathologies, 
such as revascularized grossly visible Acute Myocardial Infarction 
(AMI), where patchy microinfarct present in the peri-infarct zone 
[34,35]. Investigators reported multiple micro-embolic border zone 
in the brain, which was associated with endomyocardial fibrosis in a 
patient with idiopathic hypereosinophia using CT and pathological 
examination. Neuropathological examination revealed multiple 
arteriolar fibrinocruoric thrombi.

From a clinical perspective, patchy microinfarct in the peri-
infarct zone is of pivotal importance for the prognosis and recovery 
of LV function and arrhythmia [34,35]. An electrophysiological 
study implicated the heterogeneity of depolarization and dispersion 
of repolarization to microinfarct within the peri-infarct zone and 
concluded that microinfarct at the peri-infarct zone is a key substrate 
in arrhythmia-related to sudden cardiac death [36]. Two studies 
confirmed that a large peri-infarct zone is associated with increased 
risk of mortality or major adverse events [37,38].

In a swine model, delivery of micro-emboli also caused 
arrhythmia and 25% mortality rate within the first 24 hrs [39] and 
this mortality rate is comparable to that observed in 90 min LAD 
occlusion/revascularization animals [40]. Experimental DE-MRI 
study also demonstrated the patchy myocardial enhancement 6 hrs 
after embolization [33,41,42]. Breuckmann, et al. [41] indicated that 
a threshold of 5% was necessary for visualization of microinfarct on 
DE-MRI. Furthermore, investigators reported that only visualized 
microinfarct on DE-MRI cause LV dysfunction in patients [43] 
(Figure 1). An MRI study showed that both visible and invisible 
microinfarct resulted in LV dysfunction [44] because this imaging 
modality underestimates microinfarct size compared to microscopy. 
In a recent proof-of-concept study, we demonstrated that mildly 
injured myocardium subjected to 40 min LAD occlusion then micro 
embolization did not manifest greater susceptibility to infarction 
compared with solely embolized non-ischemic myocardium and 40 
min LAD occlusion groups [14] (Figure 2).

Breuckmann, et al. [41] reported that T2-weighted imaging was 
limited in detecting edematous area at risk 8 hrs after embolization. 
They attributed this limitation to the small difference (10%) in water 
content between embolized and remote myocardium [28]. More 
recently, T2-MRI for measurement of area at risk, based on the 
formation of interstitial edema, has been seriously criticized and 
disputed [45]. In a recent publication in patients and animals, Kim, et 
al. [46] indicated that T2-weighted MRI did not measure salvageable 
myocardium, but true infarct. 

The equilibrium state of distribution of MRI contrast media in 
myocardium is used for evaluating myocardial viability based on 
the measurement of extracellular volumes. The distribution of MRI 
contrast media in normal myocardium is in the intravascular and 
interstitial spaces, while in infarcted myocardium, the myocytes 
lose their cellular integrity to become a part of the extracellular 
space, thus providing larger distribution volume compared with 
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Figure 1: The variability in visualizing myocardial microinfarct on long-axis DE-MDCT (top left) and DE-MRI (bottom left) images in two animals after administration 
of 32 mm3 (left block) and 16mm3 of 40-120 µm micro-emboli (right block). DE-MDCT and DE-MRI long-axis view images showed speckled microinfarct along the 
inter-septal LV wall (left, white arrows) after administration of 32 mm3 micro-emboli, but not 16 mm3 micro-emboli. Unlike MDCT and MRI, TTC-stained sections 
illustrated microinfarct after administration of both micro-emboli volumes (black arrows).

Figure 2: Bars show the incremental increase in myocardial infarct sizes in animals subjected to 40 min LAD occlusion/revascularization, coronary micro 
embolization by 32 mm3 micro-emboli or the combination of both insults.

normal myocardium. The technique was first used in detecting small 
myocardial damage in rats subjected to 20min LAD coronary artery 
occlusion/revascularization. Investigators found clear difference in 
fractional distribution volume between normal myocardium (18%) 
and patchy infarcted myocardium (32%). Ischemic myocardium 
demonstrated dispersed focal cellular necrosis involving 18% of the 
cells per field under microscope [47].

The recent advancements of high field MR scanners and sequences 
for mapping T1 relaxation time allow scientists and clinicians to 
explore minor pathologic changes in myocardium. Investigators 
showed that T1 mapping sequences had the potential to demonstrate 
regional T1 changes associated with edema and diffused fibrosis [48-
54]. T1-and T2-mapping images showed increases in native T1- and 
T2-relaxation times and a decrease in T1-relaxation time in MI post-
contrast media injection too [54,55]. Native T1-mapping drew more 
attentions of clinicians, as it did not require contrast media and was 

accessible in the context of renal impairment or contrast allergies 
[55,56].

LV function

Accurate assessment of LV function is essential for the diagnosis, 
therapeutic management and prognosis. Cine MRI offers great 
advantage over echocardiography by providing a set of contiguous 
short-axis MRI LV and RV slices from the base to the apex, and long-
axis views. The ECG-triggered cine MRI sequences provide data on 
cardiac mass, volumes, and 3-D strains (radial, circumferential and 
longitudinal) after microembolization [27,33,57-59]. Such data can 
be combined with myocardial perfusion, viability and coronary flow. 
Carlsson, et al. [57] demonstrated the deleterious effects of relatively 
large micro-emboli (100-300 µm diameter, 70 mm3) on regional 
LV radial strain in swine model. Cine MRI showed the changes 
in LV volumes and ejection fraction at 1 hour and 1 week after 
microembolization compared to baseline, which might be attributed 
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to the persistent decline in the radial strain of the embolized region 
(Figure 3). In another study, a decline in ejection fraction from 49 ± 
1% at baseline to 29% ± 1 at 1 hr (P = 0.02) and 36% ± 1 at 1 week 
after delivery of 7500 micro-emboli of 100-300 μm diameter was 
documented [58]. There was poor correlation between the ejection 
fraction and microinfarct size (r = 0.20) at 1 hr or at 1 week (r = 0.54). 
Similarly, the correlation was poor between the ejection fraction 
and the extent of perfusion deficit at 1 hr (r = 0.27) or 1 week (r = 
0.39) [59]. Our findings of persistent declines in regional and global 
functions at 1 week using relatively large emboli (100-300 μm in 
diameter) are in line with findings in sheep using 90 μm emboli [60]. 
However, heterogeneity among studies exists. For example, a study 
in dogs showed that LV dysfunction occurred within hours after 
delivering of small embolic agent (42 μm) followed by a complete 
recovery of function within 5-6 days [25]. 

We also compared the effects of two micro-emboli volumes (16 
and 32 mm3) on regional and global LV function and found that the 
effect of 32 mm3 micro-emboli on radial stain was broader (involved 
at least 4 segments in basal, mid and apical MRI slices) than animals 

that received 16 mm3 micro-emboli. At the global level, micro-
emboli caused acute increases in LV diastolic and systolic volumes 
(Figure 4). Furthermore, LV ejection fraction was significantly lower 
in animals that received 32 mm3 than 16 mm3 micro-emboli [44]. 
Serial MRI studies showed that coronary microembolization led to 
LV remodeling and persistent decline in systolic wall thickening 
[39,58,61,62].

In another swine study, we explored the potential of cine MRI 
for quantifying the effects of defined micro-emboli volumes and 
sizes on LV function in preexisting 3 days old AMI [44]. Animals 
subjected to LAD occlusion/microembolization/revascularization 
showed greater LV wall thinning, decrease in ejection fraction and 
increase in end-systolic volume than controls and animals subjected 
to LAD occlusion/revascularization (Figure 5). Quantitative analysis 
showed a total of 576 segments with systolic wall thickening were 
graded as normal with a thickening of more than 30% in 192 
segments of control, 112 segments of animals subjected to LAD 
occlusion/revascularization and 64 segments of animals subjected 
to microembolization in preexisting AMI; hypokinetic, with 10%-

Figure 3: Left block: three slices cine MRI at 1 h (left) and 1 week (right) after micro embolization acquired at end diastole and end systole. Decreased function is 
seen in the anteroseptal wall (black arrowheads). Right block: Radial strain (systolic wall thickening) is shown in eight segments at baseline, 1 h, and 1 week. The 
area of micro embolization is located between segments 2 and 5 and shows dysfunction. The MR image (right) shows the location of the regions used for analysis 
of wall thickening. *P < 0.05 compared to baseline.

Figure 4: The effects of two different micro-emboli volumes are shown on LV end diastolic volume (top left), end systolic volume (bottom left), ejection fraction 
(top right) measured on cine MRI and speckled enhanced microinfarct size (bottom right) on DE-MRI. All the parameters show significant difference related to the 
micro-emboli volumes.
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29% systolic wall thickening in 48 segments in LAD occlusion/
revascularization as well as in animals subjected to micro-emboli in 
preexisting AMI groups, akinetic with 0%–9% systolic wall thickening 
in 32 segments in LAD occlusion/revascularization as well as in 
animals subjected to micro-emboli in preexisting AMI. Dyskinesis 
and paradoxical systolic-wall thinning were observed only 48 
segments of animals subjected to LAD occlusion/microembolization/
revascularization. Circumferential and longitudinal wall strains 
were also depressed after coronary microembolization [59]. Suhail, 
et al. [59] found that cine and tagged MRI sequences were useful 
for measuring left/right ventricles longitudinal and circumferential 
strains in patchy microinfarct and large infarct, respectively. HARP 
and plane metric software are used to quantify circumferential 
and longitudinal strains in microembolized infarct. Investigators 
observed that coronary micro-emboli caused greater impairment 
in LV circumferential strain and dyssynchrony than 90 min 
LAD occlusion/revascularization animals despite the significant 
differences in infarct sizes. Micro-emboli also caused a significant 
decrease in peak systolic strain rate of remote myocardium and LV 
dyssynchrony. Compensatory increase in longitudinal strain of RV 
free wall was also observed in response to micro-emboli delivered in 
the LAD and LAD occlusion/revascularization animals. This study 
concluded that 1) coronary micro-emboli with or without AMI core 
caused complex myocardial injury and ventricular dysfunction that 
were not replicable in solely AMI and 2) there was a disproportion in 
the declines of circumferential strain, dyssynchrony, and infarct size 
of animals subjected to microembolization and AMI. A clinical study 
showed that longitudinal strains measured on cine MRI correlated 
well with infarct sizes [63], while Galiuto, et al. [64] indicated that 
the improvement in longitudinal strain was an index of myocardial 
viability, associated with global LV improvement and possibly reverse 
remodeling, which is an important predictor of favorable long-term 
outcomes. Future studies are needed to determine the potential 
roles of inflammation and oxidative stress in promoting cardiac 
dysfunction using PET/MRI techniques.

Myocardial perfusion

The severity and extent of myocardial ischemia is a key to 
decision-making for revascularization. With commencing myocardial 
ischemia, a cascade of cellular, functional and electrocardiographic 
events ensues. Thallium-201 scintigraphy studies demonstrated that 
coronary stenosis causes perfusion deficits [65,66]. Investigators 
also observed a mismatch between LV dysfunction and epicardial 
coronary blood flow after revascularization [67]. First pass MRI also 
detected myocardial perfusion deficits in patients after PCI [30,68]. 

In general, microembolized myocardium with and without 
pre-existing infarct is defined as hypo enhanced zone on first pass 
MRI. Unlike DE-MRI, perfusion imaging has the potential to detect 
early effect of micro-emboli (as early as 1 hr) on myocardium 
perfusion (Figure 6). Maximum upslope, maximum SI and time to 
the peak obtained from first pass MRI perfusion are the best indices 
to estimate regional perfusion deficits [33,44,57,69]. Quantitative 
analysis of perfusion parameters revealed in these studies that 
the maximum signal intensity and time to peak were lower and 
longer, respectively, in both acute and scar microinfarct compared 
with remote myocardium. Selvanayagam, et al. [70] used first pass 
perfusion and DE-MRI to demonstrate perfusion deficits and new 
microinfarct 24 hrs after PCI. Choi, et al. [43] found an association 
between perfusion deficits and discrete AMI in patients after PCI.

In an experimental study, Mohlenkamp, et al. [71] investigated the 
changes in coronary microcirculation (intra myocardial microvascular 
blood volume, perfusion, transit time and pattern of microvascular 
injury) in response to different sizes of micro-emboli. They observed 
that 100μm microspheres resulted in patchy plugging, while 10μm 
microspheres induced contiguous hemorrhagic myocardial injury. 
Skyschally, et al. [68] demonstrated a lack of changes in baseline 
coronary blood flow after stepwise repeated injections of microsphere 
(42 μm diameter) using Doppler flow meter. In contrast, Ma, et al. 
[61] observed in swine the reductions in coronary flow reserve and 
LV ejection fraction 6 hours after emboli injection (42 μm, 120,000) 
into LAD. The animals showed complete recoveries of flow reserve 

Figure 5: Cine MRI. Left: Multislice diastolic (top row) and systolic (bottom row) cine MR images acquired at 3 days (top block) and 5 weeks (bottom block) from an 
animal subjected to 90 min LAD occlusion/revascularization. White arrows point to the site of infarction and show wall thinning at 5 weeks. Right: Multislice diastolic 
(top row) and systolic (bottom row) cine MR images acquired at 3 days (top block) and 5 weeks (bottom block) in an animal subjected to 90 min LAD occlusion/
microembolization/revascularization. At 5 weeks, the site of infarction (arrows) show greater wall thinning compared with 90 min LAD occlusion/revascularization.
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and LV ejection fraction, but LV dilation, 1 week later. Bai, et al. [72] 
also reported a persistent LV dysfunction and progressive remodeling 
in swine model 28 days after repeated microsphere injection.

Microinfarct on computed tomography

With the improvements in spatial and temporal resolutions 
and reduction in radiation exposure, Multi-Detector Computed 
Tomography (MDCT) has evolved into major clinical noninvasive 
coronary artery imaging modality. MDCT has been used for 
visualizing microinfarct and detecting LV dysfunction in embolized 
myocardium in beating swine heart model [39,73-75].

CT contrast media have extracellular distribution, thus 
theoretically, their kinetics is parallels to those of gadolinium 
chelates. On the basis of this hypothesis Jablonowski, et al. [75] 
assessed myocardial extracellular volumes in normal myocardium, 
contiguous infarct and patchy microinfarct. They found that the 
fractional distribution volume was 24% in viable myocardium, 
36% in microinfarct after delivery of 16 mm3 micro-emboli, 41% in 
microinfarct after delivery of 32 mm3, 55% in large infarct after 90 
min LAD occlusion/revascularization and 56% after 90 min LAD 
occlusion/revascularization with delivery of 32 mm3 micro-emboli. 
The microscopic measurements confirmed MDCT data. Regression 
analysis revealed excellent correlation between regional myocardial 
extracellular volume on MDCT and microscopy (r2 = 0.92). On 
micro-CT, Malyar, et al. [76] identified in vitro the patchy pattern 
of perfusion in micro embolized myocardium and attributed it to 
a random distribution and clustering of micro-emboli in micro 
vessels. However, computed tomography has limitations, such as 
poor temporal resolution, artifacts, radiation exposure and contrast-
induced nephropathy.

Microinfarct on microscopy

Micro infarct appears to share the histopathologic structure 
and progression of macroscopic infarcts. Gu, et al. [10] observed 
under light and electron microscope that delivery of auto micro 
thrombotic particles into the coronary arteries induced micro 

thrombosis, damage of vascular endothelium, and microinfarct. 
Other investigators showed that monocytes/macrophages dominated 
the cellular infiltrates for the first 2 weeks after MI and participated in 
wound healing [77,78]. Frangogiannis, et al. [79] classified the healing 
process of myocardial infarct into 3 distinct but overlapping phases; 
the inflammatory, proliferative and maturation, while Nahrendorf, et 
al. [80] summarized the roles of monocytes/macrophages in infarct 
healing, including 1) release inflammatory mediators; 2) release 
proteases; 3) phagocytose apoptotic and necrotic myocytes and 
neutrophils and other debris; 4) promote angiogenesis; 5) transport 
reparative enzymes and prosurvival factors; and 6) stimulate collagen 
synthesis and deposition by myofibroblasts. It has been shown that 
multiple injections of microspheres induce macro-infarct [72]. 
Necrotic myocyteswere generally found in the form of large or small 
islands depending on the size of obstructed micro vessels. (Figure 
7) shows the patchy microinfarct and infiltration of inflammatory 
cells in infarcted myocardium 3 days after microembolization, 
confirming a previous study [44]. Myocardial inflammation usually 
starts as early as 30 minutes at the infarct borders to clear cellular 
debris [81] and the number of macrophages peaks on the third day 
[82,83]. Bai, et al. [72] also observed an early increased inflammatory 
activity followed by persistent pro-inflammatory cytokines protein 
expression and collagen deposition. The use of iron particles, as MR 
contrast medium, might be helpful in noninvasively identifying and 
quantifying temporal changes in myocardial inflammation [84,85]. 
Monitoring macrophages/monocytes infiltration might be useful for 
predicting clinical outcomes and monitoring the beneficial effects of 
immune-modeling therapy [86].

Aged microinfarct cannot be differentiated from acute micro 
infarct based on signal intensity, but microscopically based on the 
lack of inflammatory cells and interstitial edema [14,27,87]. At 5 
weeks, macro-infarct showed scar tissue and remodeled blood vessels 
with a thick wall and small lumen, but macro-infarct superimposed 
with micro-emboli injection still have obstructed micro vessels 
(Figure 8). Furthermore, at this time micro-emboli start to migrate 
to the peri-vascular space and by 8 weeks they are settled in the 

Figure 6: Multislice first pass perfusion MR images acquired 1 hr (left, left block) and 1 week (left, right block) after LAD embolization in swine show the persistent 
perfusion deficit in embolized myocardium. DE-MR images acquired 1hr after embolization failed to demonstrate myocardial microinfarct. On the contrary, DE-MRI 
provided evidence of microinfarct at 1 week.
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Figure 7: Microscopic sections show the patchy microinfarct and infiltration of inflammatory cells in infarcted myocardium 3 days after coronary microembolization 
(10X and 100X).

Figure 8: Microscopic sections show the differences at the cellular and vascular levels between 90 min LAD occlusion/ revascularization at 5 weeks (left block) 
and 90 min LAD occlusion/microembolization/revascularization at 5 weeks (right block) animals using H&E and Masson trichrome stain. The former animal showed 
remodeled blood vessels with a thick wall and small lumen (white arrows) and new patent vessels (black arrows), but no evidence of obstructed vessels. The later 
animal showed complete obstruction of microvessels by fibrotic tissue, debris and inflammatory cells.

peri-vascular space (Figure 9). Interestingly, interstitial edema was 
evident at 5 weeks in remote myocardium of animals subjected to 
macro-infarct and coronary microembolization, but not of animals 
subjected to only macro-infarct (Figure 10). Furthermore at 5 weeks, 
animals subjected to macro-infarct and microembolization showed 
less infarct resorption (slow healing) and LV dilation than animals 
subjected to macro-infarct only (Figure 11) [27]. These findings 
prove the conjecture by Kloner, et al. [88] and Wu, et al. [89] that 
microvascular obstruction delayed/inhibited optimal infarct healing 
by slowing the delivery of inflammatory cells and nutrients. It has 
been shown that slow infarct healing can lead to LV remodeling, 
infarct rupture and death [90]. 

A clinical MRI investigation showed that the resorption of 
large infarct was faster than small infarct [91]. On the contrary in 
swine, MRI and histologic study demonstrated that the resorption 
of microinfarct was faster than large infarct [14]. At 5 weeks, the 
resorption of macro-infarct was substantially greater than macro-
infarct with microinfarct (60% and 25%, respectively) [14,92]. Choi, 
et al. [93] and Inkangisorn, et al. [94] found in patients a decline in 
infarct sizes of 27% and 31%, respectively, 2 months after infarction.

In a recent preclinical study, Grutzendler, et al. [95] proved that 
micro-emboli could be cleared from microvessels by angiophagy, in 
which emboli were engulfed by the endothelium and they translocated 
through the microvascular wall. The engulfment of emboli by 
the endothelial membrane projections leads to reestablishment 
of blood flow, vessel sparing and salvaged ischemic tissues. The 
molecular control of the extravasation mechanism involves 
mechano transduction, vascular plasticity, cytoskeletal dynamics 
and remodeling of endothelial junctions [96]. We also documented 
in large animal model the migration of microemboli from the 
intravascular compartment to the interstitium of myocardium using 
serial histologic studies (Figure 9). In previous preclinical studies 
we found that LV mass was significantly larger in animals subjected 
to coronary occlusion/ delivery of micro-emboli/revascularization 
for over 5 weeks than controls and animals subjected to occlusion/
revascularization (Figure 11) [14,87]. 

Treatment of myocardial microinfarct

Chen, et al. [97] recently found that glucocorticoid therapy 
improved LV function after coronary embolization through the 
suppression of transforming growth factor-beta 1 (TGF-β1)/
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Figure 9: Myocardial sections stained with Mass on trichrome stain to demonstrate scar tissue and intact coronary blood vessels (X200). The 3 sections show the 
migration of micro-emboli from the intravascular space into the peri-vascular space as a function of time. Up to one week the micro-emboli occupy the intravascular 
space. At 5 weeks the micro-emboli start to migrate into the peri-vascular space and 8 weeks almost all micro-emboli are located in the peri-vascular space.

Figure 10: Microscopic sections show remote myocardium in animals subjected to 90 min LAD occlusion/revascularization (left) and 90 min LAD occlusion/
microembolization/revascularization (right). The interstitial edema is evident only in LAD occlusion/microembolization/revascularization 5 weeks after the 
interventions (40X and 100X).

Smad3 and connective tissue growth factor. It also attenuated 
LV remodeling caused by microinfarct [62]. Jin, et al. [98] found 
a less decline in regional wall motion in the embolized area in 
animals treated with glucocorticoid (methyl prednisone, as anti-
inflammatory therapy) than control animals at 6 hrs after coronary 
micro embolization. Methyl prednisone administration ameliorated 
myocardial dysfunction (88.6 ± 7.6%) compared with control group 
(47.7 ± 4.7%; P< 0.001) at 6 hrs after embolization. The systolic wall-
thickening index was at the baseline, 96.3 ± 8.2%. The LV ejection 
fraction decreased from 49.9 ± 3.5% at baseline to 34.6 ± 3.7% at 6 
hours (P < 0.001) in the control group, which was significantly less 
in treated group from 47.1 ± 3.8% to 42.5 ± 3.9%. Other found that 
statins, anti platelet agents, and coronary vasodilators could protect 
the myocardium from micro-emboli when administered prior to PCI. 
Distal protection devices may retrieve atherothrombotic debris, but 
their effects are controversial. 

Experimental studies revealed that the phosphatase and tensin 

homolog deleted on chromosome Ten (PTEN) were proteins 
regulating inflammation and apoptosis. Apoptotic bodies were 
evident in microembolized and remote myocardium using cleaved 
caspase 3 stain [33,99]. This protein is highly expressed in reperfused 
AMI and it enhances inflammation after embolization [100]. 
Investigators found that inhibition of PTEN improved myocardial 
function by attenuating myocardial apoptosis [26]. 

In conclusion, clinical and preclinical studies shed light on 
the complex relationship between coronary interventions and 
myocardial microinfarct. MRI has been proven to reliably estimate 
regional perfusion and LV function of micro embolized myocardium. 
The visibility of microinfarct on DE-MRI, however, is limited and 
dependents on technical issues, such as optimization of the inversion 
time, elimination of motion artifacts and MR contrast media 
relaxativity/kinetics as well as biological issues, such as micro-emboli 
volume, age of microinfarct and collateral circulation. MRI has not 
been used for counting circulating micro-emboli during coronary 
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interventions. Microscopic examination of biopsyis for confirming 
the presence of microvascular obstruction, caused by micro-emboli, 
but obtaining biopsy is not recommended in routine clinic. At 
this time, there is no known drugs/device that has demonstrated 
conclusively myocardial protection. For advancement of clinical care 
it is of paramount importance to develop innovative techniques/
drugs for detecting, capturing micro-emboli and treating myocardial 
infarction.
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