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INTRODUCTION
Microbial endocrinology represents the intersection of two 

seemingly desperate fi elds, microbiology and neurobiology. Th is 
is based on the shared presence of neurochemicals that are exactly 
the same in the host as well as in the microorganism. Production 
of neurochemicals by microorganisms most oft en employs the 
same biosynthetic pathways as those utilized by the host, indicating 
that acquisition of host neurochemical-based signalling system in 
the host may have been acquired due to lateral gene transfer from 
microorganisms. Current perceptions of how stress infl uences the 
outcome of infections focus upon the immunology and leave the 
microbe largely as a bystander.

Stress by the central nervous system leads to release a variety of 
hormones, neurochemicals and neuropeptides, which can directly 
aff ect immune function, usually resulting in impairment [1]. Nearly 
all immune cell classes possess receptors for the stress-related 
neurohormones adrenaneline and noradrenaline [2]. Th e ability of 
bacterial pathogens to infl uence behavior has been recognized for 
decades, most notably bacteria that invade the nervous system. Th e 
term microbial endocrinolgy and the concept of the “gut microbiome-
brain axis” developed in the early 1990’s. Since their introduction 
both concepts have been the subject of growing investigations. In 
this mini-review pathogenesis, pathophysiology and the therapeutic 
applications of the microbial endocrinology in microbiology will be 
discussed. 

PATHOGENESIS
Although most microbial endocrinology studies have focused on 

the interaction of gut bacteria with the fi ght and fl ight catecholamines 
adrenaline, noradrenaline and dopamine, it is important to 
realize that bacteria and fungi can recognize a surprising number 
of eukaryotic hormones and other signals [3]. Structurally, the 
catecholamine stress hormone family are a group of widely acting 
acting eff ector compounds derived from tyrosine and other dietary 
aminoacids. Th ey chemically comprise a benzene ring with two 
adjacent hydroxyl groups and an opposing amino side chain which 
contributes to receptor specifi city [4]. Th e catecholamines use the 
second messenger adenylate cyclase system to exert their downstream 
eff ects aft er receptor binding [5].

Th e synthesis pathway for catecholamines begins with 
dietary L-dopa, which is enzymatically converted into dopamine, 
norepinephrine and fi nally adrenaline. Noradrenergic and 
dopaminergic receptors containing nerve terminals are widely 
distributed within the mammalian body, including the GI tract 
where they are components of the enteric nervous system. Further 
research of microbial endocrinolgy discovered hormone receptors in 
microorganisms and it was hypothesized that they represent a form 
of intercellular communication [8]. Pathogenic neurotoxins such as 
neurotoxin 6-hydroxydopamine were shown to alter norepinephrine 
levels in mice presenting the bi-directional nature of the host-microbe 

interaction [9]. Iyer et al. [10] showed that many enzymes involved in 
host hormone metabolism (including epinephrine, norepinephrine, 
dopamine, serotonine, melatonin etc.) might have evolved horizontal 
gene transfer from bacteria.

More clues to the existence of crosstalk between bacteria and 
the endocrine system came from the discovery of inter-kingdom, 
including the hormonal communication between microorganisms 
and their hosts [11]. It appeared from the initial observation that 
bacteria perform Quorum Sensing (QS), communication based 
on producing and sensing Autoinducer (AI) molecules. Th ese 
AI molecules are hormone-like elements that regulate functions, 
including bacterial growth, motility and virulence [12]. In addition, 
to aff ecting bacteria, these signals can modulate host cell signal 
transduction. Some AI molecules have crosstalks with host hormones 
for activating signalling pathways [13].

Host hormones also aff ect bacterial gene expression which 
in turn can have consequences on their hosts [14]. For example, 
catecholamines enhance bacterial attachment to host tissues [12]. 
Quorum sensing is enhanced by catecholamines, but inhibited by the 
human sex hormones estriol and estradiol [15].

PATHOPHYSIOLOGY
 Endocrine eff ects of bacteria infl uence a variety of host responses 

including, behavior, metabolism and appetite and immune response. 
Much of the advances in this fi eld in its infancy have been made 
through experiments, using germ-free animals, as well as experiments 
using probiotics (specifi c microbes thought to be benefi cial to the 
host) and prebiotics (non-digestible carbohydrates that act as food for 
probiotics), together with advances in sequencing and bioinformatics 
platforms.

Behavior

Th e ability of pathogens to infl uence host behavior has been 
known for long times. An example is Toxoplasma gondii infections 
of rodents, that result in such a profound decrease in anxiety, that 
infected animals no longer showed fear of feline predators [15]. 
Humans suff ering from infl ammatory bowel diseases, which are 
characterized by disturbed enteric microbial diversity, demonstrated 
poorer emotional function such as anxiety and depression [16]. 
Release of host immune factors, such as cytokines and infl ammatory 
mediators, that have neuronal targets, both within the CNS and the 
Enteric Nervous System (ENS) are believed to be involved [17].

Th e fi rst study that demonstrated the ability of a bacterium within 
the gut to infl uence behavior was shown in a series of studies using 
Campylobacter jejuni in mice [18]. In this series of studies, a low 
per oral dose of C. jejuni was able to induce anxiety-like behavior in 
mice through a vagal-mediated pathway in the absence of immune 
activation [19]. Within the gut neuronal projections from the ENS 
can innervate the entire length of the microvilli [20,21]. Coupled with 
the presence of a myriad of cells within the gastrointestinal tract, such 
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as enterochromaffi  n cells and luminal epithelial chemosensors, there 
is a host of information, that can be shared with the CNS, such as 
he brain [22]. Neufeld et al. showed that excitability of gut sensory 
neurons located within the myenteric plexus of the ENS, isolated 
from jejunal segments of the intestine, relied on the presence of the 
normal commensal microbiota for proper functioning [23].

Synthesis of benzodiazepine receptor ligands by gut bacteria can 
contribute to the development of encephalopathy that can accompany 
fulminant hepatic failure by accumulating in the brain and enhancing 
GABA ( gamma-aminobutyric acid ) inhibitory neurotransmission 
system. Subsequent reports identifi ed the neural substrates both 
within the brain and vagal-mediated gut-to-brain pathway [19]. For 
example, the ability of cetain probiotic bacteria such as Lactobacillus 
rhamnosus to infk uence emotion behavior in mice has been shown 
to be mediated via GABA receptors [25]. Changes in diet such as 
feeding of meat, which can dramatically alter the composition of 
the microbiome, have been shown to improve memory and learning 
in rodents [26]. It should not be surprising that the intestinal 
microbiome plays a critical role in the development of the brain itself 
from the time of birth [27].

Appetite and metabolism

A classic role of the gut microbiota is in digesting a variety of 
carbohydrates and fermenting them into short-chain fatty acides 
(SCFAs). Germ-free (GF) mice have diff erent metabolic profi les 
than conventionally raised mice, including low concentrations of 
SCFAs, hepatic triacylglycerol and glucose. Subtherapeutic doses of 
antibiotics, which do not eliminate the gut microbial community, but 
rather cause signifi cant changes in the composition, lead to increased 
levels of SCFAs and to weight gain in mice [28]. Th ese metabolic 
eff ects of the microbiome may further aff ect hormone production. 
For instance SCFAs have been shown to stimulate release of 5-HT 
(5-hydroxytryptamine or serotonine) and the peptide YY, a hormone 
released aft er feeding involved in appetite reduction and slowing gut 
motility [29,30]. Although a lot of neuropeptides that have a role in 
controlling appetite and regulating metabolism could be aff ected by 
the gut microbiome, this is until now more speculative than evidence-
based.

Potential candidates are; alpha-MSH (melanocyte-stimulating 
hormone, neuropeptide YY, agouti-related protein, ghrelin, leptin, 
insulin and others. Somatostatin, which suppresses the release of the 
GI and pancreatic hormones is of interest too [31]. Several pieces 
of evidence link the microbiota function to leptin levels. Use of 
antibiotica (vancomycin) in rats leads to a a dramatic decline (38%) in 
crculating leptin levels [32]. Several bacteria genera (e.g., Allobaculum, 
Clostridium, Bacteroides and Prevotella) correlate negatively 
with leptin levels, while others(e.g., Mucispirillum, Lactococcus, 
Bifi dobacterium ) correlate positively with circulating leptin 
concentrations in mice Th ese correlations may stem from bacteria 
aff ecting hormone levels, or vice versa. One proposed mechanism 
is that diet composition may impact leptin concentrations which, in 
turn, may change the microbial community composition through 
infl ammatory and or regulation of mucus production [33,34]. Rajala 
et al. [35] showed that leptin might also infl uence the gut microbiota 
independently of diet. Another model proposes that Lactobacillus 
plantarum specifi cally suppresses leptin by reducing adipocyte cell 
size in white tissue fat [32,36]. Th is fi ts the fi nding that the use of the 
probiotic L. plantarum in a group of human smokers reduced their 
serum leptin levels [37]. Leptin is involved in appetite inhibition, 

metabolism and behavior and therefore its possible interconnections 
with bacteria could be of great interest.

Grhelin, another appetite-regulating hormone is negatively 
correlated with the abundance of Bifi dbacterium, Lactobacillus and 
B, coccoides-Eubacterium rectale group, and positively correlated 
with a number of Bacteroides and Prevotella species [34]. Intake of 
oligofructose (a prebiotic that promotes growth of Bifi dobacterium 
and Lactobacillus) decreases secretion of grhelin in obese humans 
[38].

Insulin may provide another link between the microbiome and 
hormones. Signifi cant variations in microbiome composition have 
been observed in diabetic patients compared to healthy controls. 
Certain bacterial species have been positively or negatively correlated 
with insulin levels [39,40]. Transfer of the intestinal microbiota 
( including butyrate producing microbiota) from lean donors to 
metabolic syndrome patients enhanced insulin sensitivity [41].

Glucagon-like peptide1 (GLP1) is associated with appetite and 
insulin secretion.Intestinal microbiota have been implicated in 
lowering levels of GLP1 and thereby slowing intestinal transit [42]. 
However, alterations of the microbiome [43] or bariatric surgry 
[44-46] decrease adiposity and increase GLP1 levels in mice.Th is is 
primarily attributed to butyrate production by commensal bacteria 
which can induce GLP1 production by intestinal luminal cells. [43].

Butyrate is propsed to increase the expression of the hormone 
angiopoietin-like protein4 (Angptk4), also known as fasting-induced 
adipose factor, a hormone implicated in the regulation of glucose and 
insulin sensitivity and lipid metabolism, inhibiting Lipoprotein Lipase 
(LPL) and thereby reducing fat storage. Despite the general trend 
toward repression of Angptl4 by the microbiota, specifi c bacteria can 
increase hormone expression. Mice treated with L. paracasei were 
leaner than controls, had lower ciculating lipids and elevated levels of 
Angptl4 [47]. Th is is probably mediated by butyrate. So, butyrate may 
play a role in the microbiota-induced weight maintenance changes 
that involve hormonal changes.

One interesting mechanism by which microbiota aff ect peptide 
hormones is through autoantibodies. Fetissov et al. [49] found that 
autoantibodies against peptide hormones involved in appetite control 
exists in healthy humans and rats, and aff ect feeding and anxiety. In 
GF rats, levels of these autoantibodies are altered, suggesting a novel 
mechanism by which the microbiome can aff ect appetite. Th ese 
fi ndings may have implications for the potential role of the microbiota 
in eating disorders such as anorexia nervosa and healthy controls.

New data among microbiota composition come from studies 
of gastric bypass surgery, in which the relative abundance of 
Gammaproteobacteria (Escherichia) and Verrucomicrobia 
(Akkermensia) is increased. While, microenvironment changes such 
as reduced food intake and reduction of bile acids, this is likely due to 
alterations in the levels of GIP (gastrointestinal inhibitory peptide), 
GLP1 and insulin following surgery [45,46,50-52].

Immune function

Gut microbiota play a role in modulating the immune response, 
both locally and systemically, beyond repressing pathogenic microbes 
[53]. In the absence of commensal bacteria, GF mice have impaired 
development of the innate and adaptive immune system [54-57]. 
reduced number of IgA producing plasma cells [58], and a decreased 
percentage of CD4+ T cells [59]. Additionally, T helper 17 Th  17 
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cells which produces proinfl ammatory cytokines are regulated by 
gut bacteria and are promoted specifi cally by segmented fi lamentous 
bacteria (SFB) [60]. Autoimmune Disease (AD) has been correlated 
with alterations of the microbiome (dysbiosis) Th e most extensively 
studied example is type 1 diabetes [61,62]. A diff erent example linking 
the microbiota hormones and immunity comes from a study in mice, 
which showed that L. reuteri enhances wound -healing properties 
in the host through up-regulation of the neuropeptide hormone 
oxytocin, by a vagus nerve-mediated pathway [63].

Sepsis

Microbiome disruption may have a key role in sepsis and Acute 
Respiratory Distress Syndrome (ARDS). Dickson et al. have found 
culture-independent evidence that the lung microbiome is enriched 
with gut bacteria, both in a murine model of sepsis and in patients with 
ARDS (n=68). In more severely critically ill patients, lung bacteria 
were more outnumbered by the misplaced gut bacteria [64]. A large 
rural Indian trial (n=4556) showed the combination of the probiotic 
Lactobacillus plantarum plus the prebiotic fructooligosaccharide can 
help prevent sometimes deadly cases of sepsis and decrease lower 
respiratory tract infections in newborns. Panigrahi et al. [65] found 
that the synbiotic combination, which costst only one dollar per 
treatment, reduced neonatal sepsis and death by 40% from 9% in the 
placebo arm to 5, 4% among babies given the experimental treatment. 
Th is report underscores the importance of gut colonization on the 
maintenance of optimal immunological function.

It is believed intestinal microbiota not only act as a key defense 
system by locally supporting mucosal immunity, but also have 
proposed modulatory eff ects on systemic immunity. Schuyt et al. 
found that the gut microbiota play a protective role for the host 
during pneumococcal pneumonia, as refl ected by increased bacterial 
dissimination, infl ammation, organ damage and mortality in 
microbiota-depleted mice compared to controls. Fecal microbiota 
transplantation in gut microbiota-depleted mice restored local host 
defense. Whole genome mapping of alveolar macrophages showed 
up-regulation of metabolic pathways in the absence of a healthy gut 
microbiota. Th e up-regulation correlated with an altered cellular 
responsiveness, refl ected by a reduced response to Lipopolysaccharide 
(LPS) and lipoteichoic acid. Compared to controls, alveolar 
macrophage derived from gut microbiota-depleted mice showed a 
diminished capacity to phagocytose S. pneumoniae [66].

Th e microbial ecosystems of the gut and the lungs change 
substantially in critically ill patients, resulting in dramatic changes 
to bacterial communities. In animal studies of shock the microbial 
contents of the gut determine the severity of multiorgan failure and 
the risk of death, an observation supported by trials of selective 
manupulations of the gut microbiome [67]. Th e mechanisms 
that drive gut-derived sepsis are incompletely understood and 
multifactorial, off ering numerous unexplored therapeutic targets. 
During lung injury, the bacterial ecosystem of the alveolar shift s 
to a state of abundance in nutrients and growth-promoting host 
stress signals, leading to a positive feedback loop of infl ammation 
and dysbiosis. Th e microbiome is a key therapeutic target for the 
prevention and treatment of critical illness [67]. However, large 
knowledge gaps remain [68].

Miscellaneous

Growth: No direct connection has been shown to date between 
the microbiota and growth hormones. Th e microbiome’s eff ect on 

grhelin and sex hormones may indirectly promote release of growth 
hormones [69]. Additionally, SCFA’s have been shown to inhibit 
growth hormones in cows, by aff ecting gene transcription in a 
cAMP/PKA /CREB- mediated signalling pathway [70]. Furthermore, 
bacteria produce somatostatin, which is a known growth inhibitor 
[71].

Sex hormones: Results regarding the relationship between sex 
hormones and the microbiota and vice versa are inconclusive. For 
example, Prevotella intermedius takes up estradiol and progesterone, 
which enhances its growth [72] Changes in expression of the estrogen 
receptor, ER-beta, also aff ect the intestinal microbiota composition 
[73]. Th is interaction goes both ways, as several types of bacteria have 
also been implicated in steroid secretion or modifi cation [74]. For 
example Clostridium scindens converts glucocorticoids to androgens 
[74]. Intestinal bacteria also play a role in estrogen metabolism, 
because use of antibiotics leads to lower estrogen levels [75].

Pheromones: Pheromones are hormones that play important 
roles in sexual recognition, attraction and mating behavior as 
well as agression behavior and dominance. Pheromones are also 
termed ectohormones, chemicals secreted outside of the body of 
one individual and aff ecting the behaviors of others. In Drosophilia 
studies pheromones were aff ected by antibiotics and levels were 
related to a specifi c gut microbe [76]. Th ese fi ndings suggest a 
mechanism, whereby the microbiota aff ect host pheromone levels. 
Human date relating pheromones to the human microbiome are not 
available until now. Anyway, there are still considerable doubts about 
the existence of the human counterpart of putative pheromones. 
Actually, forty years of research of putative pheromones in humans 
is inconclusive and reserch in human pheromones should make a 
restart from scratch [77].

Treatment: Our perception of the microbiome has chamged 
rapidly the last decade, due to the metagenomic sequencing of the 
DNA and RNA repertoire present in the intestinal ecosystem and 
the re-emergence of gnotobiotic approaches enabling controlled 
microbial colonization of a mammalian intestine [78]. In contrast to 
the host’s genome, the microbial metagenome is highly dynamic and 
amenable to change over an individual’s lifetime [79]. Assuming a 
metagenomic contribution to disease susceptibility, this contribution 
is not stable, but rather undergoes fl uctuations over time and 
depends on environmental inputs, that modulates its constitution 
[80]. Th erefore, the therapeutic modulation of the microbiome might 
be harnassed to alter an individual’s risk for the manifestation of a 
certain disease. To design dietary or biotic interventions microbiota 
composition should be better understood [67,68].

One prototype microbiome-based intervention has recently been 
introduced in clinical practice as Fecal Microbiota Transplantation 
(FMT). Fecal microbiote transplantation is used in case of recurrent 
intestinal infection with antibiotic-resistant Clostridium diffi  cile 
[81]. In the last 5 years FMT has become a widespread and broadly 
recommended approach in the treatment of recurrent C. diffi  cile 
infections. Although standardization eff orts are still underway, the 
procedure typically involves a certain level of donor screening [82]., 
sample homogenization and fi ltration, followed by administration 
via retention enema, endoscopy, nasogastric, or nasojejunal tubing, 
or in recently developed capsule formula. Several hundred cases of 
successful FMT have been reported , with cure rates up to 90% [83]. 
Despite the success and clinical eff ectiveness, the procedure remains 
poorly controlled. FMT involves the transfer of a large number 
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of bacteria, viruses, and unicellular and multicellular eukaryotes, 
the individual function of which is largely unknown [84]. Such 
functions can manifest in phenotypic consequences, as seen in a case 
of unexpected weight gain, reported aft er familial FMT [84]. Also, 
in some cases, it might be the non-bacterial rather than the bacterial 
content, that mediates the effi  cacy of FMT. Th is has been exemplifi ed 
by fi ltrated fecal transfer, in which only bacterial cell components, 
bacterial derived molecules, and viruses are retained [85]. Th us, 
more exact knowledge about interventions through specifi c 
microorganisms that mediate the benifi cial eff ects of FMT is crucial.

Th e success of FMT in treating recurrent pseudomembranous 
colitis has given rise to the hope that a similar procedure might prove 
eff ective against either intestinal or even extra-intestinal diseases. 
Indeed, cases of FMT trials have since been reported not only for 
gastrointestinal and infectious conditions, but also for metabolic, 
autoimmune, hematologic, and even neurologic conditions [86]. 
However, in contrast to recurrent C. diffi  cile infections, the data 
from these trials are not suffi  ciently conclusive to recommend the 
immediate inclusion of FMT in standard clinical practice [87]. For 
instance, in the case of Infl ammatory Bowel Disease (IBD), FMT has 
not yet proven to be the”magic bullet” in the form of a long awaited 
therapy across diff erent manifestations of the disease, despite the fact 
that the microbiome is clearly involved in disease etiology. One reason 
could be that in IBD, the microbial community is not so disrupted as 
in recurrent pseudomembranous colitis aft er heavy prior antibiotic 
use. Another reason could be the microbiome in IBD is changing by 
environmental changes making it less amenable for FMT. Also, the 
microbiome in IBD might have enormous interindividual variations 
[88].

If FMT is not suitable for most microbiome-based therapeutic 
developments, what are the potential alternatives? One of the 
approaches could be the refi nement of microbiotic engineering by 
more targeted approaches, selecting a single bacterium, that is as 
powerful as FMT-based community replacement, with respect to 
a clinically desired eff ect. Indeed in the case of C.diffi  cile infection, 
this may be possible with only one strain, the already mentioned 
Clostridium scindens, which eff ectively inhibited C.diffi  cile via the 
production of secondary bile acids in a rodent model [89].

Further developments of this strategy include the biological 
engineering of biotic interventions through system biology approaches 
in bacteria to enhance their functionallity [90]. Additonally, targeted 
interventions with the microbial ecosystem could be achieved 
through bacteriophages, a prominent component of the intestinal 
microbiome, with the capacity to re-gut the microbial gene pool [91]. 
Indeed, several clinical trials employing bacteriophage strategies are 
underway and have so far proven safe in the fi rst phases [92].

However, the establishment of such viral therapies would 
necessitate an improved understanding of ecological interactions 
between the bacterial and bacteriophage communities in the intestine 
[93] and proof of effi  cacy [94].

As most modern drugs fi nd their origin in endocrinology, a 
pharmacological approach could be based on future research in 
microbial endocrinology [95].

CONCLUSION
Microbial endocrinology shares the presence of neurochemicals 

that are exactly the same as in neurobiology of the host as well as in 
the microorganism. More clues to the existence of crosstalks between 
bacteria came from the discovery of the inter-kingdom, including the 

hormonal communication between microorganisms and their hosts. 
It appeared from this initial observation that bacteria perform quorum 
sensing. Endocrine eff ects of bacteria infl uence a variety of host 
responses, including behavior, metabolism and appetite and immune 
response. Butyrate may play a role in gastrointestinal hormone 
expression. Microbiota can also produce autoantibodies, increasing 
the expression of peptide hormones. New data on microbiota came 
from studies of gastric bypass surgery. Gut microbiota plays a role in 
modulating the immune response. Microbiome disruption may have 
a key role in sepsis and ARDS. 

Our perception of the microbiome has changed rapidly the last 
decade, due to the metagenomic sequencing of the DNA and RNA 
repertoire present in the intestinal ecosystem and the re-emergence 
of gnotobiotic approaches. Fecal Microbiota Transplantations 
(FMTs) showed a cure rate up to 90% in recurrent antibiotic resistant 
Clostridium diffi  cile infections. Results of FMTs for infl ammatory 
bowel disease are less convincing. If FMT is not suitable for most 
microbiome-based therapeutic developments, refi nement of 
microbiotic engineering by selecting a single bacterium could be a 
solution. Bacteriophage treatment is another possibility, but this 
needs an improved understanding of ecological interactions between 
bacterial and bacteriophage communities in the intestine. Also, bio-
functionallity of bacteria can be enhanced.

As most modern drugs fi nd their origin in endocrinology, a 
pharmacological approach could be based on future research in 
microbial endocrinology.
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