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A key step of the adaptive immune response is the specific 
recognition by the T cell receptor (TCR) of foreign peptides bound 
to class I or II molecules of the major histocompatibility complex 
(peptide-MHC complex; pMHC) on the surface of antigen presenting 
cells. The type of the elicited immune response depends on the nature 
of the pMHC and the involved T cell [1]. Other not independently 
functioning signals via coreceptors, accessory and costimulatory 
interactions appear to increase the magnitude and/or the duration 
of TCR signals [2]. However, TCR-pMHC interaction is the decisive 
event that is required for all downstream events with respect to T cell 
response against foreign peptides.

Nevertheless, several studies have shown that individual TCRs 
really can recognize over a million different individual peptides in 
the context of a single MHC molecule [3-5]. Thus, on the contrary 
to what was initially suggested by clonal selection theory (“one-
clonotype–one-specificity” [6,7]), TCRs are characterized by an 
extensive cross-reactivity (alternately referred as TCR degeneracy). 
This TCR paradox of exquisite specificity accompanied by marked 
cross-reactivity is of the utmost importance not only for immune 
defense but also for thymic selection, since, in order to differentiate 
in the thymus, T cells are also required to recognize with low affinity, 
MHC molecules bearing peptides derived from self-proteins [8,9].

Thus, the molecular mechanisms underlying the intrinsic ability 
of TCRs to recognize a broad range of pMHC ligands resulting in 
activation of only a subset of effector functions (partial or weak 
agonists) or in inhibition of the T cell’s ability to respond to agonist 
stimulation (antagonists) [10-12] has been the subject of much 
investigation [13]. Since the first crystal structure determinations 
of TCR-pMHC complexes in 1996, structural, thermodynamic and 
kinetic studies have been undertaken describing different T cell 
outcomes based on strength of signal of TCR-pMHC interaction 
[2,14,15]. Nevertheless, the strength of signal has not been well 
defined and theories of how the biochemistry of pMHC interactions 
impact downstream immunological responses are all still debated 
as none of them explain all available experimental data [16-19]. 

All approaches which have attempted to address the TCR-pMHC 
structure-function relationship, including binding pocket energetics, 
molecular dynamics and thermodynamical modelling have been 
proven to be prone to extensive binding/free energy degeneracy, 
evidently failing altogether to yield accurate prognostic models of the 
TCR-pMHC outcome.

The atomic or the electronic scale of protein-protein interaction 
is invariably intractable for biologically relevant structures. On the 

other hand, the existing gap in understanding the apparent paradox 
of TCR specificity and cross-reactivity may be attributed to the 
unavoidable referencing at the mesoscale (of the order of 100 Å in 
the case of the TCR-pMHC complex) as is, for instance, the norm 
in kinetic studies via molecular dynamics. Such approach, however, 
apparently reflects primarily the technical conundrums rather than 
a conscious research choice; the issue of relating the electronic state 
of the TCR-pMHC complex to any plausible biological mechanism 
operating on the molecular level requires cross-discipline skills and 
cross-discipline intuition, which, even today, represents a challenge. 
In other words, it is understandable that reverting to the mesoscale 
is owing to the appreciable span of length scales –between three 
and four orders of magnitude– which separates the molecular level 
of the immune recognition from any causal mechanism� [20] at the 
atomic level of protein structure. However, the indications that such 
a relation may be convincingly decrypted have already been in place 
since the substitution of a single peptide residue is able to alter the 
functional outcome of TCR-pMHC recognition. The latter behaviour 
must be seen as reflective of the causality cast upon a scale smaller 
than the residue (e.g. on the electron density).

On this basis, we have recently established that certain descriptors 
associated to the atomic structure of the peptide and its underlying 
electronic structure reflect the immunological outcome of the in vitro 
TCR-pMHC interactions [20-24]. This finding was initially arrived at 
by addressing the case of the Tax nonapeptide (LLFGYPVYV) from 
the human T-cell leukemia virus type 1 (HTLV-1) that, presented by 
the HLA-A0201, acts as a strong agonist for the A6 TCR [25]. Most 
profoundly, while laying out our methodology, we contemplate that 
the study of the electronic structure of the TCR-pMHC interaction 
opens up a whole new field of research, which may qualify as 
Quantum Immunology.

Within the premise of our studies a combination of atomic 
correlation statistics (primarily atomic coordination, to be also 
referred to as coordination henceforth) and quantum chemical 
calculations were shown to predict immunological responses [21-23]. 

More precisely, our work on the Tax protein [26-28] indicated that a 
number of Tax variant peptides (which present spectacular differences 
in functionality, while exhibiting near-identical stereochemistry 
[25]) in complexation with the same TCR, consistently revealed 
different quantum chemical behavior, intrinsically expressed by the 
protonation state of the peptide’s N-terminus [22]; agonist peptides 
selectively exhibited a stable ammonium group on their N-termini, 
which was altogether unattainable for antagonists. Remarkably, 
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this finding was consistent across the range of conditions studied 
in regard to peptide formal charge and protonation of side chain 
groups [22,23]. Most importantly, the difference in the quantum 
chemical behavior of agonists versus that of antagonists was found 
to be reflected on the coordination of the variant in respect to the 
native (index) peptide: over-coordination in respect to the index 
signified an agonist, whereas under-coordination indicated an 
antagonist. It was additionally established that this trend is also valid 
for all crystallographed variants of the immunodominant human 
cytomegalovirus (HCMV) peptide (NLVPMVATV, pp65495–503) [24]. 

The results in Figure 1 are dependent on a single peptide structure 
for each of the Tax variants studied. The peptide structures were 
determined by previous crystallography studies. For each of the 
crystallographed structures, quantum mechanical relaxation of the 
H species resulted in a number of differing conformers. However, 
the heavy atoms on all conformers were kept immobile in their 
original (crystallographed positions). In order to test the potential 
for generalization of these results, we additionally performed 
classical molecular dynamics (MD) studies in which each of the 
crystallographed structures was introduced to thermal motion at 
physiological conditions. All MD simulations were performed in the 
micro canonical ensemble (NVE). Based on our unpublished data, 
the distribution of the antagonist P6A was shifted towards lower 
coordinations in respect to Tax confirming the trend of agonist 
under-coordination shown in figure 1.

The emerging tight link between the peptide-specific T cell 
response and the atomic coordination of peptide’s tertiary structure 
is of the utmost importance. Its confirmation would provide 

explanation for the dependence of the immune response on the 
primary structure of the peptide. Furthermore, it may constitute the 
scientific underpinning of the ability to manipulate immune responses 
based on the principles of quantum mechanics. It should be stressed 
that atomic coordination is essentially a high-level abstraction of 
electronic structure and, in particular, of the manner in which valence 
electrons combine towards the formation of molecular orbitals (i.e. of 
covalent bonds). The types of chemical bonds and their strength when 
valence electrons combine depends principally on the types of atoms 
within the first coordination shell of interatomic interactions. This 
fact is particularly important in the case of peptide structure as the 
first coordination shell is principally dictated by the primary sequence 
of the peptide. Hence, it could be said that primary structure feeds 
into the electronic structure by means of coordination and it is more 
than likely that, in the case of the peptide, this relation will eventually 
be accurately simulated by quantum molecular dynamics. For that 
to happen with adequate consistency, the mechanism of quantum 
confinement of the peptide on the MHC groove must be previously 
uncovered. We envisage that atomic coordination may be used as a 
cost function for the determination of such peptide confinement and 
we deem that our current work is the precursor of in silico synthesis 
of the tertiary structure of peptides as a dependable alternative to 
crystallography.

We argue that there must be a fundamental (i.e. based on 
electronic structure) mechanism underlying even to the kinetics of 
the peptide during TCR recognition, albeit potentially a complex one. 
Although quantum molecular dynamics in the Born-Oppenheimer 
regime may provide intuition as to the kinetics, the normal 
practice is to reference the energetics of peptide binding into MHC 
pockets; however this practice has not managed to account for any 
fundamental mechanism common to all crystallographed peptides. 
On the contrary, atomic coordination of peptide tertiary structure 
in the pMHC-TCR complex appears to be the definitive functional 
descriptor for the discrimination of peptide agonism. Again, the 
research theme of merit, according to our current understanding, is 
the assessment of the role of pMHC rigidity – and the implication of 
hydrophobic portions of the peptide in this rigidity – in the functional 
outcome; on the basis of atomic coordination this research theme 
may be resolved quite soon.

Our finding that atomic coordination is directly correlated to 
peptide immunogenicity represents the first example of a direct 
relationship between peptide atomic/electronic structure and TCR-
pMHC functional avidity. Accordingly, the technological ability 
to define and predict peptide immunogenicity –particularly if this 
ability only involves some minimal determinism intrinsic to quantum 
mechanics– constitutes visionary science; such a possibility has far 
reaching implications, which transcend the TCR-pMHC complex 
and touch upon the generic issue of protein-protein interaction. In 
the same context, the ability to predict peptide immunogenicity sets 
the scene for unprecedented technological possibilities.
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