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solubility, functionalization, and cellular uptake. So, this diversity of 
the properties has been attributed to symmetry and type cross-link 
bonds on the nanotube walls, that on the base it, nanotubes had to 
divide into three diverse types consisting of an armchair, zigzag and 
chiral. Symmetry is one of the key factors in an interaction between 
drug and nanotubes. Moreover, a considerable number of studies 
have been done on the both of the experimental and theoretical about 
to use nanotubes as Nano-carriers of anti-cancer drugs [8,28-40].

Yixuan et al. [41] looked into theoretically to adsorbing process 
of DOX as an anti-cancer drug on the surface, and into single-walled 
carbon nanotubes. Progressively, they were comprehension that 
drug encapsulated was better and stronger than the adsorption on 
a sidewall of the nanotubes, owing to the fact that there was in the 
process of drug encapsulation, hydrogen bonding, and π-π stacking 
were together, despite the adsorption on a surface of the nanotubes 
there was only have a little π-π stacking interaction. Th ereby the 
process of drug encapsulation and drug release of nanotubes would 
occur slowly, and also little drug amounts would be missed before 
arriving at tumor’ tissues, that’s quite vital in DDS. Generally, the 
Interaction between TMZ and SWCNT open-ended have been 
investigated in various environments and temperatures by molecular 
mechanics and quantum mechanics methods. As a result, have 
been indicated that the most stable environment for the interaction 
between TMZ and SWCNT open-ended was water solvent in 310 K 
[42]. In fact, there were some made natural capsules bio-molecules 
for example proteins, peptides, and an anti-cancer drug molecule 
has been successfully done [43,44]. For this purpose, roosta et al 
had investigated the encapsulation process of the anti-cancer drug 
Gemcitabine (GMC) in Single-Walled Boron Nitride Nanotubes 
(SWBNNTs) open-ended, and Single-Walled Carbon Nanotubes 
(SWCNTs) open-ended by Molecular Dynamics (MD) simulations. 
Indeed, the study results of the encapsulation have shown that GMC 
inclined to come through in BNNT and located in its center [31,43]. 
Th erefore, a suitable understanding of the behavior of drug molecules 
inside nanotubes in the encapsulation process is vital for the extension 
of drug delivery carriers [18].

INTRODUCTION
Cancer is one of the great reasons for mortality overall in 

the whole world [1]. Generally, unshielded and direct using 
chemotherapy drugs for cancer treatment is one of the approaches 
collation with this disease that has pretty dangers for healthy cells [2]. 
In recent studies, many researchers have employed targeted Drug 
Delivery Systems (DDS) for obliterating cancer’s tissues, by taking 
nanostructures have been provided [3-6]. Nanotubes are the great 
materials that possess potential applications in the DDS domain [4,7-
13]. Currently, the huge interior region, needles shape and the viable 
surface functionalization of the nanotubes, those have been converted 
to perfect Nano carriers for DDS [14-23]. Besides, most of the small 
drug molecules confi ned in CNTs have been investigated theoretically, 
including Doxorubicin (DOX), cisplatin, gemcitabine, ciprofl oxacin, 
indomethacin, lamivudine, amantadine, and TMZ. Furthermore, for 
decreasing of the toxicity eff ect of the anti-cancer drugs developing 
DDS is necessary [24]. TMZ drug molecule has been continuously 
attracted attention some of the researchers because of its extended use 
as an oral alkylating agent in treatment dangerous brain tumors such 
as glioblastoma, astrocytoma, and melanoma which are serious types 
and off ensive of the brain cancer. It is frequently used in the treatment 
of a type of tumor namely known glioma. Th us, this pharmaceutical 
molecule is in current fi rst-line of chemotherapy for behaving against 
brain cancer. Despite this positive eff ect of the TMZ on cancer’s 
tissues, practically procedure of patient’s treatment is quite poor. On 
the other hand, this process totally rejects many factors such as to 
cross over the Blood-Brain Barrier (BBB), short half-life in circulation, 
low drug arrival and extreme drug permeating in the tumor cells [24-
27]. TMZ has pretty inclined to join other combinations, especially, 
with the pharmaceutical feature materials. With this in mind, that 
has capable of constituting non-covalent bonds and building supra-
molecular structures. Nevertheless, for the purposeful drug delivery, 
encapsulation drug into nanotubes are one of the most effi  cacious 
methods. Additionally, nanotubes have got analogous structures 
although they possess various properties including biocompatibility, 
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In this study, the process of encapsulation of TMZ as an anti-cancer 
drug was investigated by quantum mechanics methods. As the fi rst 
step in this direction, a wide variety of nanotubes was used, to predict 
the most favorable structure toward carrier of the drug to tumor cells 
including SWCNTs, SWBNNTs, and Single-Walled Silicon Carbide 
(SWSiCNTs) open-ended for the fi rst. Equally important, eff ects of 
type (gender), structure and diameter of nanotubes in this research 
has been investigated. In conclusion, the totally optimized geometry 
of structures, including drug, nanotubes, and complexes ( like as 
drug@nanotubes) have been done, and binding energies of complexes 
have been calculated as well as electronic properties of structures such 
as Density of States (DOS) have been determined.

COMPUTATIONAL METHOD
Preparation of initial models

In this research, the zigzag and armchair open-ended single-
walled nanotubes with a diameter ranging from 12 to 16 angstrom 
and length ranging from 17 to 24 angstrom have been considered, 
wherein, the fully optimized geometry structure of drug and 
nanotubes and information details them presented in fi gure 1 and 
table 1 [45].  For instance, nanotubes structure have been designed 
by NANOTUBE MODELER package [32,46]. Th e structure of drug 
has been constructed by GAUSS VIEW 5.0 package. Th e diameter 
of the drug is 9.171 angstrom. Optimization of drug and nanotubes 
geometry structure has been done by GAMESS-US/UK package 
[47]. All nanotubes are open-ended and for unfeeling dangling bond 
eff ect, and a decrease of time calculation, a mouth of nanotubes were 
enriched with H atoms [46,48].

Quantum mechanics

All calculations optimized geometry structures, and also 
complexes, binding energies have been done by density functional 
theory (DFT-Semi-core Pseudopods) method. Owing to the fact that 
the core electrons are dropped, the calculation is less computationally 
expensive, but because of these core potentials including some degree 
of relativistic eff ects, they can be very useful approximations for 
heavier elements. In the present work, Ab initio calculations have 
been performed on the Generalized-Gradient Approximation (GGA) 
with the Perdew-Wang 91 (PW91) functional, as well as all of the 
calculations performed on Double Numerical Polarization (DNP) as 
a basis set [41].

RESULTS AND DISCUSSION
Under those circumstances, results being demonstrated a process 

of encapsulation of drug inside nanotubes, in the fi rst stage, in order 
to understand the nanotube/drug interactions, the Binding Energy 
(Eb) of the drug onto nanotube is defi ned as shown in a table 2. All 
nanotubes are proportionate to the drug diameter. Th e diameter of 
the drug is 9.171 angstrom. In this regard, the negative Eb values 
indicate that the stability of complex nanotubes/drug is energetically 
favorable. Computation of binding energies described by the ensuing 
equation: 

Eb= ENT-Drug – (ENT + EDrug)

Where, ENT-Drug, ENT, Drug are respectively total energies 
of Drug@nanotube complex, the isolated nanotubes, and isolated 
TMZ. According to the defi nition, the polarity of the drug molecule 
indicates that the process of drug encapsulation into polarity 

Figure 1: Fully optimized structures of a) CNT (10, 10) b) BNNT (10, 10) C) 
SiCNT (8, 8) d) CNT (10, 0) e) BNNT (10, 10) f) SiCNT (14, 0) g) Drug.

Figure 2: A fi nal optimized geometries, drug located into the tube, and the 
equilibrium distances drug of interior’ surface of the tube.

Table 1: Pristine nanotubes considered.

Species Diameter (A°) Length (A°)a

Pristine CC (10, 10) 14.2 19.07

Pristine CC (17, 0) 13.8 17.8

Pristine BN (10, 10) 14.3 19.7

Pristine BN (17, 0) 13.6 18.1

Pristine SiC (8, 8) 14.3 22.6

Pristine SiC (14, 0) 14.07 22.2
aA*: Angstrom.

Table 2: Binding energy (Eb) of TMZ into SWNTs considered.

Species Eads (kcal/mol)

CC (10, 10)@Drug -5.3

CC (17, 0)@Drug -5.9

BN (10, 10)@Drug -7.7

BN (17, 0)@Drug -7.5

SiC (8, 8)@Drug -9.1

SiC (14, 0)@Drug -11.1
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nanotubes are energetically favorable in fi gure 2. Th ese results have 
been indicated structure and type (gender) of nanotubes play a vital 
role in the stability of drug into tubes (Figure 3).

In order to understand the eff ect of diameter in the process of 
drug encapsulation into nanotubes, diff erent diameters shown in the 
table 3 was considered.

Th e results indicate that a decrease in the diameter is responsible 
for the strongest of interactions. Also, eff ects Basis Set Superposition 
Error (BSSE) on the interaction energy between drug and nanotube 
can be obtained by the following equation:

Eads= ENT-Drug - (ENT + EDrug) + Ebsse

Primary calculation results show that among all selected 
nanotubes, an interaction between TMZ and SiCNT (7, 7), SiCNT 
(13, 0) is more favorable and reliable and promising than other tubes 
(Figure 4).  In addition, investigation of the nanotubes diameters, 
before and aft er the encapsulation process, indicate that diameter 
of CNT (n, m) increasing aft er to encapsulate whereas for the CNT 
(n, 0) diameter decreased. Furthermore, the diameters of both of 
type (armchair, zigzag) BNNTs, SiCNTs are increased aft er the 
encapsulation process [8,35].  In the other words, whether the decrease 

in diameter is responsible for more interaction between the drug and 
the interior surface of the nanotube or eff ect of curvature. Obtained 
results have indicated according to the calculations performed in the 
DFT environment, the eff ect of curvature is more [48].

To the deepen understanding of values of the adsorption energy 
between TMZ and SWNTs and nature of bonds, we evaluated 
electronic properties based on the Density of States (DOSs) for the 
all of the complexes, isolated nanotubes, and isolated drug. As shown 
in fi gure 5. An insignifi cant change in the DOS spectra indicates that 
there isn’t a noticeable diff erence between the pristine nanotube and 
nanotube@drug complexes. Correspondingly, this data shows the 
presence of physical interaction between them. Th e above results 
were confi rmed with more analyses. First, based on the change in 
the electronic structure of all complexes, could have been received 
that insignifi cant values of electrons are transferred in the process 
of encapsulation drug molecule between the drug molecule and 
nanotubes. Second, with respect to, results of Mulliken Population 
Analysis (MPA) exhibit that complexes charge transfer is negligible. 
Comparatively, in the CNTs, a charge transferred from the interior 
surface of the nanotube to drug molecule, but in the BNNTs, SiCNTs, 
the charge transferred from drug molecule to interior surface of the 
nanotube. As noted, the best interaction among complexes was related 
to SiCNT (7, 7)@Drug and SiCNT (13, 0)@Drug. A negligible change 
in the DOS spectra could be found for both desirable complexes, 
before and aft er the encapsulation process. In the other words, the 
low diff erence in the DOS plot before and aft er encapsulation process 
could be shown nature of bonds and also illustrated that adsorption 
was physical.

Th e fi nal point which deserves some words here is that molecular 
orbital results analysis provides an impressive method for studying 
intra-and intermolecular bonding and interaction among bonds and 
provides a suitable basis for investigating charge transfer. Th erefore, 
the electronic properties of pristine components and nanotube/drug 
systems are considered. Th e electron population analysis reveals 
that considerable charge transfer occurs during the adsorption and 

Figure 3: Determination of dipole moment of a) drug b) CNT c) BNNT d) 
SiCNT.

Table 3: Types of nanotubes considered.

Species Diameter (A°) Length (A°) Species@Drug binding energy (kcal/mol) Adsorption energy (kcal/mol)

Pristine CC (9, 9) 12.923 19.074 CC (9, 9)@Drug -6.82 -4.41

Pristine CC (10, 10) 14.227 19.076 CC (10, 10)@Drug -5.32 -3.35

Pristine CC (11, 11) 15.528 19.074 CC (11, 11)@Drug -4.76 -2.18

Pristine CC (16, 0) 12.599 17.821 CC (16, 0)@Drug -6.56 -4.31

Pristine CC (17, 0) 13.818 17.818 CC (17, 0)@Drug -5.99 -4.05

Pristine CC (18, 0) 14.184 17.819 CC (18, 0)@Drug -3.95 -2.01

Pristine BN (9, 9) 13.207 19.686 BN (9, 9)@Drug -9.27 -7.47

Pristine BN (10, 10) 14.363 19.389 BN (10, 10)@Drug -7.76 -6.41

Pristine BN (11, 11) 15.518 19.268 BN (11, 11)@Drug -7.47 -6.00

Pristine BN (16, 0) 12.941 18.150 BN (16, 0)@Drug -9.00 -7.17

Pristine BN (17, 0) 13.652 18.150 BN (17, 0)@Drug -7.54 -5.74

Pristine BN (18, 0) 14.556 18.151 BN (18, 0)@Drug -7.65 -5.94

Pristine SiC (7, 7) 12.662 24.185 SiC (7, 7)@Drug -10.91 -9.39

Pristine SiC (8, 8) 14.349 22.635 SiC (8, 8)@Drug -9.12 -7.91

Pristine SiC (9, 9) 16.109 24.184 SiC (9, 9)@Drug -8.64 -7.60

Pristine SiC (13, 0) 12.916 21.094 SiC (13, 0)@Drug -11.54 -10.27

Pristine SiC (14, 0) 14.072 22.191 SiC (14, 0)@Drug -11.18 -9.98

Pristine SiC (15, 0) 14.098 21.098 SiC (15, 0)@Drug -9.56 -8.40
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encapsulation processes. Th e Energy of the Highest Orbital Molecular 
Occupied (HOMO) and Lowest Orbital Molecular Unoccupied 
(LUMO) was calculated (Table 4). Fermi energy calculation for this 
systems indicates charge transfer happening between drug and tubes 
is negligible.  As have been shown, the increase in diameter in the 
pristine armchair nanotubes, the gap energy amount is increased. In 
the light of, gap energy of armchair nanotubes complexes is increased 
while the number of gap energies for the zigzag pristine nanotubes 
and complexes at fi rst increased and aft erward decreased which 
displayed that chirality plays a salient role in the nanotube reactivity 
[35].

CONCLUSION
In summary, according to the materials we have investigated the 

geometrical structures, energetics, and electronic properties as well as 
interactions between the drug molecule and nanotubes. In this work, 
we have reported a theoretical study of encapsulation of TMZ drug 
molecule into both armchair and zigzag diff erent nanotubes. A wide 
variety of nanotubes with various properties like gender, structure, 
and diameter considered. Th e results obtained show that the drug 
molecule inclined to locate into SWSiCNT by physical adsorption. 
In case, the polarity of the drug molecule indicates that the process 
of drug encapsulation into polarity nanotubes are energetically 
favorable. Curvature eff ect plays a vital role in the encapsulated 

Figure 4: Calculated diameter of a) pristine SiC (7, 7) and complexes with 
drug b) pristine SiC (13, 0) and complexes with drug.

Figure 5: Calculated density of state for the complexes, pristine nanotubes 
and pure drug a) CNT (9, 9) b) BNNT (9, 9) c) SiCNT (7, 7) d) CNT (16, 0) e) 
BNNT (16, 0) f) SiCNT (13, 0).

Table 4: The calculated energies of HOMO (eV), LUMO (eV) and gap energy of 
Complexes, pristine nanotubes and drug.

Species Fermi energy 
(eV)

EHOMO 
(eV) ELUMO (eV) Gap energy 

(eV)
Pristine CC (9, 9) -0.148255 -3.955 -3.737 0.218

Pristine CC (10, 10) -0.14866 -3.987 -3.731 0.256

Pristine CC (11, 11) -0.148823 -3.971 -3.713 0.258

Pristine CC (16, 0) -0.145842 -3.896 -3.744 0.152

Pristine CC (17, 0) -0.14598 -3.914 -3.892 0.022

Pristine CC (18, 0) -0.146021 -3.979 -3.9 0.079

Pristine BN (9, 9) -0.212046 -5.527 -0.941 4.586

Pristine BN (10, 10) -0.211638 -5.588 -1 4.588

Pristine BN (11, 11) -0.211 -5.531 -1.037 4.494

Pristine BN (16, 0) -0.210681 -5.438 -1.267 4.171

Pristine BN (17, 0) -0.21048 -5.446 -1.26 4.186

Pristine BN (18, 0) -0.210603 -5.741 -1.355 4.386

Pristine SiC (7, 7 -0.183764 -4.816 -2.495 2.321

Pristine SiC (8, 8) -0.183316 -4.824 -2.5 2.324

Pristine SiC (9, 9) -0.182771 -4.984 -2.652 2.332

Pristine SiC (13, 0) -0.146874 -3.814 -3.572 0.242

Pristine SiC (14, 0) -0.146439 -3.797 -3.62 0.177

Pristine SiC (15, 0) -0.146003 -3.811 -3.623 0.188

CC (9, 9)@Drug -0.147789 -4.028 -3.673 0.355

CC (10, 10)@Drug -0.148219 -4.036 -3.655 0.381

CC (11, 11)@Drug -0.148782 -4.047 -3.648 0.399

CC (16, 0)@Drug -0.145505 -3.9 -3.848 0.052

CC (17, 0)@Drug -0.145729 -4.005 -3.952 0.053

CC (18, 0)@Drug -0.145715 -3.972 -3.893 0.079

BN (9, 9)@Drug -0.210703 -5.72 -3.527 2.193

BN (10, 10)@Drug -0.210583 -5.719 -3.371 2.348

BN (11, 11)@Drug -0.210252 -5.72 -3.373 2.347

BN (16, 0)@Drug -0.2091 -5.676 -3.562 2.116

BN (17, 0)@Drug -0.20954 -5.698 -3.476 2.222

BN (18, 0)@Drug -0.209094 -5.695 -3.366 2.329

SiC (7, 7)@Drug -0.183405 -4.992 -3.376 1.231

SiC (8, 8)@Drug -0.183035 -4.979 -3.586 1.393

SiC (9, 9)@Drug -0.182582 -4.968 -3.496 1.472

SiC (13, 0)@Drug -0.147434 -4.127 -3.917 0.21

SiC (14, 0)@Drug -0.146863 -4.105 -3.949 0.156

SiC (15, 0)@Drug -0.146241 -4.1 -3.917 0.183

Drug -0.215385 -5.861 -3.441 2.42
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process. Especially, when the nanotube diameter goes decrease. It 
should be noted results obtained from DOS plot indicate the drug 
adsorption into nanotube was physical. It also negligible changes in 
amounts of energy between HOMO and LUMO indicates the drug 
molecule bonds with nanotubes are quite weak which it is a critical 
issue in releasing the drug molecule in vitro process.   In case, some 
theoretical fi ndings such as binding energies, charge transfer, a 
density of states plots, and total density introduced the nanotubes, 
typically SiCNT an effi  cacious nano-carrier for delivery of TMZ 
drug at nano-medical predominant. In that case, it’s hoped that the 
research will broaden our understanding of encapsulation behavior 
of drug molecules into nanotubes that have a vital role in developing 
drug delivery vehicles at the nano domain.
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