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INTRODUCTION
Glaucoma is the leading cause of irreversible blindness worldwide 

[1], and aff ects approximately 2% of the UK population over 40 [2]. 
It is characterised by the eventual development of optic neuropathy. 
Th is is expressed as progressive Optic Nerve Head (ONH) damage 
with associated visual fi eld loss. Th e exact pathophysiology of 
glaucoma is not yet fully understood, and although there are 
many established risk factors, the specifi c vascular dysregulation 
associated with glaucoma is not clear. Moore et al. [3] propose that 
the impairment of ocular blood fl ow could result in retinal ganglion 
cell death and changes in the ONH: both crucial elements in the 
pathophysiology of all glaucoma subtypes. It has been proposed 
that vascular dysregulation in the ONH may be due to vasospasm 
(abnormal vascular responsiveness [4]), independent of the eff ects 
of age [5]. Th is in turn, makes the eye more sensitive to fl uctuations 
in Intraocular Pressure (IOP) and systemic blood pressure [6,7]. It 
is generally assumed that any vascular dysregulation in the ONH 
is localised to the blood vessels of the disc, however, there is a 
growing body of research suggesting defi cits continue further up the 
visual pathway [8-14]. Evidence from healthy adults supports this: 
an artifi cial increase in IOP has been shown to result in decreased 
Visually Evoked Potential (VEP) amplitude [15]. It is increasingly 
recognised that there are a number of systemic risk factors associated 
with glaucoma, that include hypertension [8,16], other vascular risk 
factors16, ocular perfusion pressure [17], migraine [18] & diabetes 
[19]. Given the above literature, it is not surprising that there is an 
increasing body of evidence linking glaucoma to Obstructive Sleep 
Apnoea (OSA). 

Sleep related breathing disorders have been widely recognised 
as being on a continuum of pathophysiological cardiovascular and 
respiratory responses, all of which may have important acute and 
chronic health implications [20]. Within this spectrum is OSA, 
which is characterised as repeated interruptions of breathing during 
sleep, caused by the collapse of the upper airway [21]. OSA has 
signifi cant health consequences including chronic sleep deprivation 
[22], cognitive decline [23-26], migraine [27], and cardiorespiratory 
dysfunction with consequences such as hypertension [28,29], 
heart failure or disease [25,30,31] and stroke [30,32-34]. Yet, OSA 
is oft en under-diagnosed as it requires a full polysomnographic 
evaluation which is an overnight diagnostic tool in sleep medicine 
that incorporates a battery of tests [22]. Apnoeic episodes can cause 

fl uctuations in cerebral blood fl ow both in wakefulness and in sleep 
[35]. Many habitual snorers may have undiagnosed OSA [36], yet 
research shows snoring has similar implications on general health 
and cerebral haemoydnamics as OSA [21,37-39]. Although there is 
evidence that suggests that snoring infl uences blood pressure through 
obesity, OSA and nocturnal hypoxia [40], there is an overwhelming 
body of literature that concludes that there is an increased risk of 
hypertension in snorers that is independent of age, weight or other 
lifestyle factors [41-44]. Snoring and nocturnal hypoxia are related 
to a wide number of ophthalmic complications most likely with a 
multifactorial origin [19]. While we aim to investigate the potential 
link between these two conditions, this relationship is particularly 
diffi  cult to study as it may be confounded by other underlying risk 
factors such as hypertension and diabetes [45], that are systemic in 
nature. 

Th ere is mixed evidence regarding the relationship between 
glaucoma and OSA, both conditions with haemodynamic 
consequences. Whilst some studies have shown an increased 
prevalence of OSA in glaucoma patients [46-54], others have failed 
to support this fi nding [55-59]. In early 2015 two meta-analyses 
were published both reporting a statistically signifi cant relationship 
with OSA as having an association with an increased prevalence of 
glaucoma. Th e fi rst study included 12 research papers and reported 
the odds ratio of 1.65 [60] to be the measure of association between 
glaucoma and OSA. Th erefore, the odds of glaucoma and OSA 
occurring together were higher than in the normal population. 
Th e second meta-analysis paper used a more systematic approach, 
categorising literature into either case-control or cross-sectional 
studies - including 9 of the original 12 studies used by Wu and Liu 
[60] and reported an odds ratio of 1.96 and 1.41 respectively by 
pooling data from 2.3 million participants [61]. Despite the diffi  culty 
of the many studies’ varying methodologies, inclusion criteria, types 
of patients (both glaucoma and OSA), there is undoubtedly strong 
evidence to suggest that a relationship exists between these two 
conditions. 

Th ere are two theories attempting to explain this association: 
a mechanical theory and a vascular theory. Th e mechanical theory 
centres on the link between pressures and glaucoma: OSA causes 
sleep disturbances and changes in sympathetic tone [44], metabolic 
dysfunction and systemic infl ammation [29], which subsequently leads 
to ONH damage and potentially glaucoma [48,61,62]. Alternatively, 
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the vascular theory postulates that during apnoeic events (temporary 
suspension of breathing) in OSA, the decrease in oxygen levels leads 
to progressive asphyxia exhausting the cerebrovascular reserve [38]. 
Th is in turn, results in damage to the ONH [46], retinal nerve fi bre 
layer [17], and may have the potential to cause changes in brain 
activation and morphology [63]. Th e current study contributes to 
the vascular theory as well investigates the apparent link between 
glaucoma and snoring by examining the Haemodynamic Response 
(HDR) associated with each. 

functional Near Infrared Spectroscopy (fNIRS) can provide a 
measure of cortical processing of the associated HDR to neuronal 
fi ring, providing a non-invasive measure of imaging cortical 
processing. fNIRS is an optical neuroimaging technique that uses 
near infrared light to measure changes of blood oxygenation 
concentrations in the cortex, recording both Oxy- ([HbO]) and 
Deoxy-Haemoglobin ([HbR]) concentrations [64]. Previous research 
has used fNIRS to successfully characterise the HDR to visual, auditory 
and physiological stimuli, proving it to be a reliable neuroimaging 
technique [65-76]. Th is evidence has proven fNIRS to be a valuable 
neuroimaging tool for both normal and clinical populations to assess 
cerebral haemodynamics. 

To our knowledge, this is the fi rst study to use fNIRS to explore 
the haemodynamic relationship between glaucoma and snoring in 
terms of a task-related visual HDR. According to the vascular theory 
of OSA, apnoea reduces blood oxygenation, which in turn causes 
damage to the ONH. To test the hypothesis that apnoea also has 
detrimental eff ects on the primary Visual Cortex (V1), we completed 
a pilot study using fNIRS to measure the HDR in response to a 
reversing checkerboard stimulus in habitual snorers and in glaucoma 
patients. 

MATERIALS & METHODS
Patients

We recruited participants with glaucoma or habitual snorers, 
with individual approximate age-matched controls. Th ere were 
8 glaucoma patients (range 56 - 78 years old, 3 females), 6 snorers 
(range 26 - 61 years old, 3 females) and 10 control participants (range 
21 - 74 years old, 8 females). All participants were recruited from 
the Glasgow Caledonian University (GCU) Vision Centre patient 
database or from the GCU staff  list. Participants who reported that 
they snored, and experienced frequent episodes of apnoea, were 
included in the snorers group and were considered potential OSA 
suff erers. Neither control nor glaucoma group participants reported 
such severe snoring and/or sleep related diffi  culties. None of the 
participants were current smokers, a number were on hypertensive 
medication and had other medical history; these details can be 
seen in table 1. A full medical history was taken and all participants 
completed a short general health questionnaire before beginning the 
tasks. Th is included a short health related Activities of Daily Living 
(ADL) questionnaire designed to assess how much illness interferes 
with patients’ daily living [77]. Resting blood pressure and heart rate 
were measured using a non-invasive blood pressure cuff  applied 
to the left  arm. Th is study was approved by the ethics Committee 
of Glasgow Caledonian University. Informed written consent was 
obtained from all participants prior to testing in accordance with the 
Declaration of Helsinki (Table 1). 

Procedure

Visual assessment: All participants had measurements of 

visual acuity taken prior to testing. Glaucoma patients were selected 
from the GCU Eye Clinic database. All had undergone a recent eye 
examination within the GCU Eye Clinic and were under the care of an 
ophthalmologist for monitoring of their glaucoma. Measures of IOP, 
cup-to-disc ratio, and visual fi elds (Humphrey Visual Field Analyzer, 
Central 24-2 SITA FAST) were taken from the clinical record of their 
most recent eye examination (Table 1).

fNIRS protocol: A Frequency-Domain Multi-Distance 
(FD-MD) fNIRS system was used (OxiplexTSTM), allowing us to 
determine absolute quantities of cerebral haemoglobin chromophore 
concentration ([chromophore]). Th is instrumentation uses 2 
wavelengths of light (690 nm, 830 nm), is frequency modulated (110 
MHz) and uses near infrared light photon absorption, scattering and 
phase data to calculate change in [HbO] and [HbR]. To assess the 
HDR of V1 we recorded over O1 and O2 according to the EEG 10-20 
International System of Electrode Placement [78]. A standard ISCEV 
visual stimulus was used [68,79] : full-fi eld reversing checkerboard 
(100% contrast, 7.5 Hz temporal frequency, 30 minutes of arc check 
size). Th ese parameters ensured all participants could comfortably 
perceive the stimulus and reliable data would be collected. Participants 
were seated in an upright position 1 meter away and were asked to 
fi xate on a central blue dot displayed throughout the task. A pre-
task baseline recording was collected in response to a grey screen 
of equal mean luminance to the checkerboard for 2 minutes. Th e 
reversing checkerboard or grey screen was intermittently displayed 
for 30 seconds each for 10 cycles. Th is instrumentation and protocol 
has been described in detail elsewhere [68,80,81]. Figure 1 shows the 
experimental set up.

Data analysis: Data were pre-processed in MATLAB as 
previously published68. Briefl y, all data were normalised with respect 
to the pre-stimulus baseline and a moving average low-pass fi lter 
was applied. An average HDR to the checkerboard was calculated by 
averaging across all data responses to the experimental cycles. Lastly, 
a grand average was taken of the last 15 seconds of data per phase, 
representing the greatest stable change of the HDR [68,69,72,73,82-
85].

RESULTS
Visual Stimulation

As no statistically signifi cant diff erences were found between 
hemispheres (O1,O2) these data were averaged to create an overall V1 
response. Additionally, to investigate potential diff erences at baseline, 
a 2-way ANOVA was performed on the pre-experimental data 
entering cerebral [chromophore] ([HbO], [HbR]) as a within-subject 
factor and group as a between-subject factor. Th is failed to show any 
group diff erences (F1,21 = 1.69, p > 0.05), indicating our samples were 
comparable before beginning the visual task and resting-state HDR 
were similar amongst participants. Th ere was a clear response to the 
visual stimulation in all three groups. A two x 2 repeated measures 
ANOVA was performed with stimulation (checkerboard on, off ) and 
cerebral [chromophore] ([HbO], [HbR]) as within-subject factors and 
groups entered as between-subject factors. Th ere was a main eff ect of 
visual stimulation (F1,19 = 20.9, p < 0.001, η2 = 0.52), oxygenation (F1,19 
= 7.47, p < 0.05, η2 = 0.28), and an interaction between the two (F1,18 
= 58.2, p < 0.001, η2 = 0.75). When examining the overall HDR for 
each group this can be seen as a characteristic increase in [HbO] and 
decrease in [HbR] during the checkerboard stimulation compared 
to the baseline grey screen (Figure 2, A-C). Group diff erences were 
apparent with 3 group interactions all with large eff ect sizes: group and 
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stimulation (F1,19 = 5.63, p < 0.05, η2 = 0.37), group and oxygenation 
(F1,19 = 11.57, p < 0.001, η2 = 0.55), and group, stimulation and 
oxygenation (F2,19 = 3.69, p < 0.05, η2 = 0.28). Post-hoc independent 
samples t-tests were used to compare the group diff erences with 
corrected confi dence intervals of 99.99%. During the ‘on’ phase of 
visual stimulation, controls had a greater change of [HbO] compared 
to snorers (mean diff erence = 0.393, t12 = 3.45, p < 0.01, ds = 1.92), and 
glaucoma patients (mean diff erence = 0.350, t10 = 3.93, p < 0.01, ds = 
1.91). Th ese results represent the greatest stable change in the HDR in 
response to the reversing checkerboard and demonstrate compelling 
diff erences between the groups with large eff ect sizes. Th is can be seen 
in the overall HDR in fi gure 2 (D) wherein both glaucoma (dashed 
red line) and snorers (solid black line) demonstrate an attenuated 
[HbO] response to visual stimulation. Glaucoma and snorer groups 
were statistically comparable in terms of their HDR in V1 in both ‘on’ 

and ‘off ’ phases for both [HbO] and [HbR] (p > 0.05). Please note 
these statistical results remained when the two glaucoma patients 
with concomitant AMD were removed from the analyses. In terms 
of [HbR] all groups were comparable during both phases of visual 
stimulation (p > 0.05) (Figure 2). 

Glaucoma correlations

To investigate the relationship between optical measures of visual 
function and cerebral oxygenation, we computed a correlational 
analysis within the glaucoma group. Bias corrected and accelerated 
bootstrap confi dence intervals using 5000 resamples and a 95% 
confi dence interval [86] were used. All outcome measures were 
entered (fNIRS data, visual acuity, visual fi elds, blood pressure, 
heart rate, ADL and age). It has been suggested that the pattern 
standard deviation of the visual fi elds may underestimate the extent 

Table 1: Individual participant details, group assignment, medical notes, age, sex, Visual Acuity (VA) for left and right eyes, Blood Pressure (BP), Heart Rate (HR) 
and Activities of Daily Living (ADL) score. 

Group Subject Medical notes Age Sex VA BP HR ADL

R L Systolic Diastolic

Control

1 21 F 0.0 0 117 98 74 0.00

2 26 F -0.2 -0.2 131 74 63 0.00

3 28 F -0.2 -0.2 122 68 50 0.00

4 42 F -0.1 -0.1 141 91 70 0.00

5 56 F -0.1 -0.1 118 64 65 0.00

6 58 M 0.0 0.0 131 90 72 0.00

7 68 F 0.0 0.0 0.00

8 Hypertensive medication 74 M -0.1 0.3 133 84 59 0.00

9
Subclinical cataracts, 

hypertensive medication
77 F 0.0 -0.1 156 105 59 0.50

10 Cataract removal previously 78 F 0.0 0.0 138 80 90 0.00

Snorer

11 26 F 0.0 0.0 132 91 105 0.00

12 CPAP 47 F 0.0 -0.1 124 86 71 0.00

13 57 M 0.0 0.0 157 107 54 0.00

14 Hypertensive medication 58 F 0.0 0.0 0.00

15
Type 1 Diabetes insulin 
injections, hypertensive 

medication
58 M 0.0 0.0 118 84 70 0.00

16 61 M -0.1 -0.1 128 79 87 0.00

Glaucoma

17 PDS/ PG, Xalatan treatment 56 M 0.0 0.0 169 79 58 0.00

18
POAG, ARMD, Bimatoprost 

& brinzolamine/ timolol 
combination eye drops

69 M 0.0 0.0 137 82 73 0.25

19
POAG, Bimatoprost/ timolol 

combination eye drops
70 M 0.0 -0.1 100 71 67 0.75

20
Suspected glaucoma, 

hypertensive medication
72 M 0.0 0.2 134 82 69 0.75

21
NTG, hypertensive medication, 

Asopt eye drops
73 F 0.6 1 136 82 71 2.50

22
Longstanding NAG treated 

with trabeculectomies, ARMD, 
hypertensive medication

77 F 0.3 0.2 170 87 113 0.75

23
Longstanding NAG treated with 
trabeculectomies, hypertensive 

medication
78 M 0.2 balance 164 89 57 1.50

24
POAG, hypertensive medication, 
Timolol & latanoprost eye drops

79 F 0.2 0.2 152 84 63 0.00
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of glaucomatous damage [87]. We therefore used the mean defect as 
a global index. Th e IOPs were excluded from the statistical analysis 
because of normal daily fl uctuations of IOP and also because several 
of the glaucoma patients used eye drops to lower their IOP (Table 1). 
Th ere was a signifi cant relationship between V1 [HbO] and the left  eye 
visual fi eld (r = -0.98, p < 0.001, CI = [-0.49 -1]). Also, the right visual 
fi eld correlated signifi cantly with patients’ reported ADL (r = -0.82, p 
< 0.05, CI = [-0.02 -0.99]). Note that these statistics remained when 
glaucoma patients with only one glaucomatous eye were removed. 
Th ese correlations imply that those patients with worse mean defects 
on their visual fi elds had higher ADL scores, and smaller changes in 
[HbO] in response to the checkerboard stimulation, regardless of the 
inclusion/ exclusion of those glaucoma patients with concomitant 
AMD.

DISCUSSION
To clarify the potential vascular relationship between glaucoma 

and OSA, we used fNIRS to quantify changes in [HbO] and [HbR] 
during a visual task. As this was a pilot study with inherent constraints, 
we recruited all subtypes of glaucoma patients and habitual snorers, 
but recruitment to these groups was mutually exclusive. Although 
all participants produced a reliable V1 HDR to the reversing 
checkerboard, with a distinctive increase of [HbO] and decrease of 
[HbR] during visual stimulation, there were statistically signifi cant 
group diff erences with strong eff ect sizes. In response to visual 
stimulation, snorers had the smallest change in [HbO], followed 
by glaucoma patients who also showed an attenuated response in 
comparison to healthy participants (Figure 1D). Th ese results show 
that 28% of variance in the HDR elicited by visual stimulation, is 
attributable to group characteristics (p < 0.05, η2 = 0.28), therefore 
the magnitude of these fi ndings is considerable. Here, we report the 
novel fi nding that in response to visual stimulation, both glaucoma 
patients and habitual snorers present with an attenuated [HbO] 
response in comparison to healthy participants. Th is fi nding relates 
specifi cally to the systemic infl uences of each of these syndromes. Our 
glaucoma patients did not snore, and our habitual snorers did not 
have any glaucoma. Th erefore, these groups were mutually exclusive. 
Accordingly, these results support the vascular theory hypothesis 
that apnoea may aff ect not just the ONH but further up in the visual 
pathway such as the visual cortex. Th ere is signifi cant support for 
this evidence of neuronal degeneration in glaucoma extending 
beyond the retina. In the primate model of glaucoma, neuronal loss 
was reported by Yucel et al. [88], in both M and P pathways of the 
Lateral Geniculate Nucleus (LGN) of the fellow eye, as well as the 
glaucomatous eye. Th is degeneration has been confi rmed in humans 
using functional Magnetic Resonance Imaging (fMRI): not only do 
glaucoma patients present with LGN atrophy in comparison with 
healthy controls [11], but the degeneration correlates with their 
clinical severity as measured by visual fi elds [89]. High tension and 
primary open-angle glaucoma patients show a decrease in V1 cortical 
activation as measured by fMRI [90-94], whereas normal tension 
glaucoma patients do not [90]. Diff usion Tensor Imaging (DTI) has 
also highlighted the involvement of the entire visual pathway, with 
clinical glaucoma stages correlating with DTI parameters thought 
to refl ect axonal damage to the optic radiations [95]. Lastly, a 
clinicopathological case of a male glaucoma patient supported this 
with visual pathway damage from the LGN to V1 correlating with 
visual fi eld loss [10]. Regarding OSA, previous reports have shown 
no signifi cant diff erences in V1 grey matter volume between patients 
and controls [63]; ours is the fi rst study to report a reduction in 
functional activation in habitual snorers in comparison to health 
controls (Figure 1). Th ese results complement previous literature 
in which fNIRS was used to record the HDR from frontal cortex of 
sleeping OSA patients, and where it was demonstrated that there was 
a reduced cortical response [67,96-99]. 

We also show that ADL, a self-report measure of the patients’ 
perspective of how much their illness interferes with their social/ role 
activities, signifi cantly correlated with visual fi eld mean defect. Th is 
short but eff ective questionnaire has provided results similar to more 
extensive quality of life assessments for glaucoma patients [100,101]. 
Visual fi elds also correlated with [HbO] responses during visual 
stimulation. Th e results illustrated that those patients with worse 
fi elds presented with an attenuated [HbO] response to checkerboard 
stimulation, and felt subjectively that their vision was having a 
negative impact on their overall daily life. Th ese fi ndings directly 
support previous neuroimaging evidence of a strong correlation 
between reduced resting cerebral blood fl ow and loss of visual 

Figure 1: Stimulus cycle. After baseline, the subject views binocularly 
a reversing checkerboard of high contrast, which is then replaced by 
isoluminant grey. Repeated ten times. 

Figure 1: Average haemodynamic response cycle per group to visual 
stimulation (0-30s) and control grey screen (30-60s) demonstrating an 
increase in [HbO] (red) and decrease in [HbR] (blue). Means and standard 
errors of the mean (s.e.m.) are plotted. (A) Control group, (B) snorers, (C) 
glaucoma patients. (D) Group comparisons in [HbO] with controls (solid red 
line), glaucoma patients (dashed red line) and snorers (dashed black line) 
plotted.
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function [90-94]. Th e modifi ed HDR in V1 in both resting state and 
functional tasks, indicates that the vascular dysregulation linked to 
glaucoma, has eff ects further up the visual pathway beyond retinal 
ganglion cells as previously discussed. We propose that visual fi eld 
defects have a direct impact on V1 functioning, though this may be 
due to a number of reasons within the visual pathway such as retinal 
ganglion cell loss or vascular dysregulation of V1.

An interesting discussion point is Subject 17 who was referred to 
an ophthalmologist from the GCU Eye Clinic for suspected glaucoma 
and was tested prior to his ophthalmology appointment. He was 
subsequently assessed and diagnosed with narrow anterior chamber 
angles and asymmetric optic disc cupping, but with no evidence of 
glaucoma. Yet, compared to the other glaucoma patients, he had a 
similar cup-to-disk ration, IOP and visual fi elds (Table 1). When 
examining the HDR in V1, this subject also displayed a median 
response within the glaucoma group. Th is highlights the variability 
of the glaucoma syndrome along with the current diagnostic and 
monitoring techniques for disease progression. Here we propose 
fNIRS to be an objective tool that could assist in glaucoma diagnosis 
and monitoring. FDMD-fNIRS is portable, cost eff ective and could 
easily be used in an eye clinic or hospital setting to aid clinicians. In 
this way, fNIRS could be used to discriminate potential glaucoma 
suff erers based on their HDR. Additionally, during glaucoma 
screening and diagnosis, patients’ potential risk for developing OSA 
could be highlighted by NIRS for referral to a sleep clinic for further 
testing. Clearly future work would need to provide normative NIRS 
data for glaucoma patients who are not yet undergoing treatment. In 
this way we could ascertain whether this attenuated V1 HDR can be 
accounted for by reduced neuronal input to the visual cortex due to 
glaucomatous defects in the visual fi eld. 

Various limitations to this study warrant discussion. Firstly, our 
small sample size for each experimental group makes it diffi  cult to reach 
any generalised conclusions to the wider populations. Th is weakness 
is not novel as it is clear that both of these syndromes do not have 
pathognomonic signs, with numerous overlapping risk factors and 
patients presenting with varied characteristics. However, as this was 
an exploratory study, with few exclusion criteria, we aimed to provide 
a representative sample of data on the haemodynamic consequences 
of both conditions. Future research would ideally involve diagnosed 
OSA patients using overnight polysomnography and NIRS, in 
which more generalised conclusions may be made. Here we present 
characteristic fi ndings relating habitual snorers to glaucoma patients 
and healthy controls. Our data show for the fi rst time that snorer’s 
and glaucoma patients’ haemodynamics are disturbed during a 
visual task. During checkerboard stimulation glaucoma patients 
and snorers were statistically comparable in terms of their HDR, 
with an attenuated [HbO] response compared to controls. Given 
the multiple systemic associations between glaucoma and OSA, 
this work contributes to the understanding of the haemodynamic 
consequences of these conditions, showing NIRS to be a suitable tool 
in assessing the HDR of patient populations. Th e diffi  culty in this fi eld 
of research is to disentangle the numerous pathophysiological links 
between the two conditions. Indeed, we agree with Shi et al. [61], who 
highlight the necessity of careful control of systemic confounds when 
investigating glaucoma and OSA, and suggest OSA may merely be a 
marker of poor health, and not necessarily an independent risk factor 
for glaucoma. 

To conclude, the HDR recorded from V1 to visual stimulation 
is attenuated regardless of the pathophysiology of our snorers and 

glaucoma patients. Our results show the potential of NIRS to assess 
changes in the HDR in identifying potential ‘at risk’ glaucoma 
patients. Likewise for habitual snorers before they develop OSA. 
Further data on untreated glaucoma patients is crucial, and it may 
be that the V1 HDRs indicate early glaucomatous changes. Th is, in 
conjunction with existing diagnostic techniques and fNIRS measures 
of V1, would be advantageous in the diagnosis of glaucoma. We have 
presented novel results that show the potential of fNIRS as a method 
that provides an objective measure of absolute cerebral oxygenation 
in clinical populations.
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