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INTRODUCTION
The efϐicacy of a drug may be drastically limited due to 

its poor solubility in aqueous medium, since only dissolved 
substances can be absorbed [1]. In addition, poor solubility 
can lead to side effects. The therapeutic activity of a drug is 
depending of its acid-base dissociation (pKa) and solubility [2]. 
The knowledge of pKa values [3] is of great worth in order to 
solve some galenical questions, solubility being in addition a 
parameter important to devise the elaboration of formulations. 
Many biological compounds have also nearby acidity constants. 
Its absorption, subsequent transport and effect on the living 
organism are affected by the concentration ratio of protonated 
to non-protonated forms [4,5], so knowledge of the acidity 
constants is of great worth.

The most common and simple acid-base potentiometric 
titration method is not generally applicable in the case of 
sparingly soluble compounds [6]. There are also compounds 
whose conjugated acid-base forms have similar absorption 
spectra. The solubility method, although laborious, shows its 
usefulness in these cases, when a proper analytical method allows 
performing the measurements of solubility. Some examples of 
compounds (calcein blue, butaperazine, sulfadiazine, tyrosine, 
8-hydroquinoline and niϐlumic acid), whose behaviour is well 
adapted to conventional acid-base dissociation equilibria without 
further complications, have been selected from the bibliography 
for study. 

Single least squares method and the classic monoprotic 
bilogarithmic method have been applied to re-evaluate the pKa 
values of the compounds subject of study. For very close pKa 
values (pKa2 and pKa3 of tyrosine) a slope-intercept procedure 
is applied. Residual analysis, error analysis and t-testing slope 
(bilogarithmic method) is carried out in both kind situations. 
Results obtained in all cases are compared with literature data.

DETERMINATION OF ACIDITY CONSTANTS 
FROM SOLUBILITY MEASUREMENTS 

The method of solubility measurements for the evaluation of 
pKa is quite laborious [1,5-12], but useful when: 

• The substance is too insoluble in water to apply the 
potentiometric or conductometric methods

• The UV-visible spectra of molecular and ionic forms are 
either very similar or lack it. 

The fact that the spectra are identical does not prevent 

the analysis of saturated solutions, which can be determined 
gravimetrically (after precipitation with a reagent) or 
spectrophotometrically (after the addition of a chromogenic 
reagent). The sensitivity of the method can be greatly increased 
by labelling the substance with a radioactive isotope.

A sparingly soluble acid or base is partitioned between the 
solid and a saturated solution. The concentration of a neutral 
acid, HR, (s0)
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will be constant in a saturated solution, but the total solubility 
will vary with pH. Parentheses in Eqns. (1) and (2) denote 
activities and brackets concentrations. It is necessary to carry 
out the determinations ionic and constant temperature. Then a 
mixed or Bronsted acidity constant is obtained. 

Solubility is measured over a wide pH range by a standard 
analytical method. The value of the intrinsic solubility, s0, 
obtained by extrapolation (Table 1) of solubility at low pH 
values (HR) or high pH values (B). The logarithmic equations 
to be applied in the evaluation of acidity constants, obtained by 
rearranging Eqns. (1a) and (1b) in the case of the neutral acid HR, 
and (2a) and (2b) in the case of the B base are shown in table 1. 
In practice, an excess of problem is stirred in the thermostated 
bath with buffer solutions under inert atmosphere until a ϐixed 
concentration is found by analysis. The dissolved solute is 
separated by centrifugation and the pH is measured immediately. 
Albert and Serjeant [6] gives useful recommendations.

A representation of the logarithmic of the quotients between 
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Table 1: Expression for the calculation of the intrinsic solubility and pKa.
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solubility and intrinsic solubility minus one against pH gives a 
straight line of slope unit (acid) or minus slope unity (base) that 
intersect the x-axis at the pKa values

0

1
a

apK
a

                  (3)

Deviations of the slope from its nominal value could indicate a 
problem with the model, for example, additional equilibria. Next 
we are going to calculate the values of acidity constants of the 

chemical systems indicated above described in the bibliography. 
The solubility data as a function of the pH of these systems are 
shown in table 2 [13-18]. In ϐigure 1 their structural formulas are 
shown. 

CALCEIN BLUE
Calcein blue is a ϐluorescent metallic indicator [13,19], which 

is obtained by condensation between 4-methyl-umbelliferone, 
formaldehyde and iminodiacetic acid. The pKa1 of calcein blue 
is very low, so its intrinsic solubility is not susceptible to direct 
measurement, being obtained by extrapolation of the line of 
solubility against the inverse of the activity of the protons, 
obtaining a value equal to 1.00 mg/ 100 mL. 

SULFADIAZINE
Sulfadiazine is a sulfonamide type antibiotic. It is an 

amphoteric compound of the HR (=s0) type [14,20], which is 
protonated in an acidic medium and deprotonates in basic 
medium, forming charged species in both cases, H2R+ and R-, 
respectively, with the consequent increase in solubility
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The intrinsic solubility is close to the minimum solubility 
obtained in the central part of the curve, since the pKa’s are not 
very close. The plot of the solubility against the activity of the 
protons in the alkaline side (Figure 2), or against the inverse of 
the activity of the protons in the acid part, leads to a mean value 
of the intrinsic solubility of 6.00 mg/ 100 mL. 

TYROSINE
Tyrosine is one of the twenty amino acids that make up 
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Figure 1: Calcein blue (a), sulfadiazine (b), tyrosine (c), butaperazine (d), 
8-hydroxiquinoleine (e) and nifl umic acid (f) structures.

Table 2: Solubility based on the pH of substances of analytical and pharmaceutical interest.

Calcein Blue [13] Sulfadiazine
[14]

Tyrosine
[15] Butaperazine [16] 8-Hydroquinoline [17] Nifl umic acid [18]

pH s(*) pH s(*) pH s(**) pH s(*) pH s(***) pH s(***)

2.36 1.20 1.00 68 1.45 16.5 6.0 283.4 3.92 72.2 1.20 0.211

2.80 1.71 1.26 66 1.56 13.8 6.4 113.8 4.03 14.64 1.55 0.116

3.39 3.77 1.55 25.2 1.675 10.8 6.6 72.5 4.29 5.50 2.15 0.0429

4.45 32.37 1.89 16.5 1.861 8.43 6.8 46.5 4.38 5.28 2.55 0.0314

4.65 48.19 2.31 9.3 2.160 5.39 7.0 30.1 4.65 3.396 3.20 0.0269

4.74 59.44 2.69 7.5 2.457 4.10 7.2 19.7 4.75 2.093 3.65 0.0236

3.06 6.9 2.857 3.25 7.4 13.2 5.83 0.653 4.30 0.0269

4.89 6.33 3.19 3.09 7.6 9.1 6.36 0.585 4.75 0.0321

6.01 8.5 5.1-5.5 2.62 7.8 6.5 7.01 0.556 5.35 0.0593

6.35 11.1 8.342 3.54 8.0 4.9 7.75 0.555 5.70 0.125

6.82 19.4 8.865 4.30 8.55 0.594 6.20 0.250

7.23 43.5 9.249 7.06 9.76 1.102

7.56 86 9.484 10.7 9.95 1.608

7.67 114 9.726 17.5 10.25 2.525

8.00 129 9.841 24.7 11.07 14.59

9.881 30.4

9.953 35.8

(*) mg/100 mL (**) milimol/L (***) g/L
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proteins. It is classiϐied as nonessential in mammals, since 
its synthesis is produced from the hydroxylation of another 
essential amino acid: phenylalanine. It is an H2R-type substance, 
amphoteric, which is protonated in an acid medium, and in a 
basic medium suffers a double deprotonation, so it has three 
constants of acidity

    
 

  2
2

1 2 3
23

B B B
a a a

H H R H HR H R
K K K

H RH R HR

    

 

        
      

 (5a,b,c)

Since this phenomena occur independently, the intrinsic 
solubility, s0=[H2R], can be considered as the minimum (2.62 
millimoles/L) in the graph (Figure 3) of solubility against pH. 

In the basic medium, two simultaneous deprotonations occur 
and then taking into account Eqns. (4a,b,c) the solubility is given 
by
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which on rearranging we ϐinally get
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A representation of the member on the left of the Eqn. (7) 
versus the inverse of the activity of the protons leads to a straight 
line of the form, y = a0 +a1 x, from whose intercept and slope the 
values of acid constants sought are calculated as
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BUTAPERAZINE
Butaperazine is an antipsychotic used in the treatment of 

schizophrenia and chronic brain syndrome belonging to the 
phenothiazine class. It is a diacid base (B) with well-separated 
acidity constants [21]; solubility data in table 2 are given only 
for the basic side. The intrinsic solubility calculated by plotting 
solubility against proton activity is equal to 2.067 mg/ 100 mL. 

8-HYDROXYQUINOLINE
The 8-hydroxyquinoline or oxine is a monoprotic (HR) 

amphoteric bidendate chelating agent. It has been used for a long 
time in metal analysis due to its chelating power. Its complexes 
and the reagent itself have antiseptic and disinfectant properties 
[22].

The logarithmic equations compiled in table 1 may be ϐirst 
applied ϐirst, taking in ϐirst instance the minimum solubility value 
as the intrinsic solubility.

From Eqn. (4a,b,c) we get
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With the values of acidity constants evaluated a better value 
of the intrinsic solubility may be calculated. By substituting Eqn. 
(9c) in Eqn. (9a), we get the si value and on rearrangement we 
have
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Once a better value of the intrinsic solubility is known, s0= 
0.549 g/L after a single coarse cycle (the acidity constants are 
well separated) the logarithmic equations (Table 1) are then 
applied. 

NIFLUMIC ACID
It is a non-steroidal anti-inϐlammatory drug used to relieve 

joint and muscle pain. It is an amphoteric substance of the HR 
type.

ERROR ANALYSIS
The law of error random propagation [23], applied to a 

function R=f(a0,a1) gives
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sa0
2, sa1

2 and cov(a0,a1) are the variance of the intercept, the 
variance of slope and the covariance between the slope and 
intercept, respectively, obtained by means of the least squares 
method.

In the case of the logarithmic method from Eqn. (3) by simple 
algebra we get ϐinally
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Figure 2: Evaluation of intrinsic solubility of Sulfadiazine from data on the 
basic side (s = 2.188E-06/(H) +5.980).
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Figure 3: Graph of the solubility data [15] of tyrosine as a function of pH (the 
theoretical curve obtained with the parameters evaluated in this paper fi ts the 
experimental data well as show the red solid line).
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In the case of tyrosine, from Eqns. (8a,b) the following 
expressions are derived for the standard deviations of pKa2 and 
pKa3
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A detailed treatment of the error analysis applied (derivation 
of the formulas involved) to the evaluation of acidity constants 
may be seen [24] in a recent paper. LINEST function in Excel 
[25,26] gives all necessary parameters with the exception of the 
cov(a0,a1)

 
2

/
0 1cov , y x

XX

s
a a x

S
 

LINEST gives the standard deviation of the regression line, 
sy/x. The sum of squares about the mean of the x values, SXX, is 
directly calculated in Excel with the DEVSQ function (SOMME.
CARRES.ECARTS in French and SUMQUADABW in German [25], 
and DEVSQ also in Spanish).

EVALUATION OF MIXED (BRONSTED) 
ACIDITY CONSTANTS

The results obtained by applying the bilogarithmic method, 
usually known as Krebs and Spealman method [6,14] (Table 1) 
to the experimental data compiled in table 2 with the aid of the 
least squares procedure are shown in table 3. Values of estimated 
mixed (Bronsted) pKa

B constants, from now on called pKa through 
the paper, are reported in this table with three decimal digits in 
all cases even if they are not signiϐicant. Ionic strength is equal 
to 0.1 for calcein blue, sulfadiazine, and 8-hydroxiquinoleine 
systems. It is assumed to be constants for the niϐlumic acid [16] 

and butaperazine [18] (as no information is given for them). 
However, data for tyrosine were obtained [15] at varying ionic 
strength. In the case of the calculation of overlapping pKa2 and 
pKa3 of tyrosine the slope intercept procedure corresponding to 
Eqn. (7) is applied. 

The number of points selected in each case, the relevant values 
of the slope and intercept, and the corresponding standard errors 
associated, together with the R2 value, are included in the table 
3. Values very close to the intrinsic solubility were discarded in 
the calculations. The applicability of the simple bilogarithmic 
model (Table 1) may be checked by means of the Student t-test. 
The difference between the experimental slope and the unity 
(absolute value) theoretical slope value is signiϐicant if the value 
of t experimental

1

1
exp

1

a

a
t

s



                                  (15)

is higher than the value tabulated for t for k-2 degrees of freedom 
and the 95% conϐidence, t (k-2, 0.05). A search to Table 3 shows that 
signiϐicant differences are obtained with tyrosine (pKa1) and 
8-hydroxiquinoleine (pKa1). 

In the case of the pKa1 of the tyrosine system ionic strength 
is assumed to be constant. In spite of this approximation, as 
results are very precise, the small standard deviation of the slope 
is the reason why calculated (experimental) t value exceeds the 
tabulated one. The slope is about a four per cent away from the 
unity. In the case of the pKa1 of 8-hydroxiquinoleine system the 
calculated value of t is only slightly superior to the tabulated one. 
However the deviation from the theoretical slope is greater in 
this case, of the order of a ten per cent. In both cases residual 
analysis (Figures 4 and 5) have a random pattern suggesting a 
valid model from (only) this point of view. 

WEIGHTING
The weighting factors w

i for the weighted least squares [27,28] 
are given (assuming that pH is free from error and random errors 
are mainly concentrated in solubility measurements) by

Table 3: pKa evaluation of mixed acidity constants of acid, basic and amphoteric compounds.

Compound k tcal ttab a0  ± s (a0) a1 ± s(a1) R2 pKa1 pKa2 pKa3

Calcein Blue 5 2.389 3.182 -2.9081 ± 0.0222 0.9871 ± 0.0054 0.9999 2.946 ± 0.007

Sulfadiazine 6 0.284 2.776 2.1346 ± 0.1275 1.0193 ± 0.0679 0.9825 2.094 ± 0.044

7 0.720 2.571 -6.3550 ± 0.1019 0.9897 ± 0.0143 0.999 - 6.421 ± 0.014

Tyrosine 7 3.442 2.571 2.1181 ± 0.0232 -0.9611 ± 0.0113 0.9993 2.204 ± 0.006 - -

7 8.124E-10 ± 4.64E-11 6.52E-20 ± 8.14E-21 0.9278 - 9.090 ± 0.025 10.095 ±  0.077

Butaperazine 10 0.200 2.306 8.1314 ± 0.0068 -0.9998 ± 0.001 1.0000 - 8.133 ± 0.001

8- Hydroxiquinoleine 7 2.624 2.571 5.7628 ± 0.1928 -1.1018 ± 0.0388 0.9938 5.230 ± 0.031 -

5 0.324 3.182 -9.5902 ± 0.2853 0.9907 ± 0.0287 0.9975 - 9.681 ± 0.025

Nifl umic Acid 4 0.148 4.303 2.1356 ± 0.0615 -0.9953 ± 0.0318 0.998 2.146 ± 0.085 -

4 0.534 4.303 -4.9131 ± 0.382 0.9631 ± 0.0691 0.9898 - 5.102 ± 0.047
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Figure 4: Evaluation of pKa1 of tyrosine from solubility measurements.

-0.10

-0.05

0.00

0.05

0.10

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

3.5 4.5 5.5 6.5

R
es

id
ua

l

lo
g 

[(s
/s

0)
-1

]

pH
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measurements. The pKa values of 8-hydroxyquinoleine are calculated by a 
successive approximation method as indicated in the previous section. It is 
observed that tyrosine measurements at basic pH are not as reliable as those 
obtained at acid pH. The slope of the line corresponding to butaperazine is 
practically equal to the unity. Results obtained in previous paper are compiled 
in table 4 for the sake of comparison.
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as s is converted into the logarithmic term in Eq.0 (1b, 2b). The 
weights calculated from Eqn. (10) may be normalized [25,26]. 
The application of the weighted linear regression instead of the 
single linear regression leads to similar results, not being applied, 
as it is in this case an unnecessary complication.

Final Considerations: No Models Perfect

The therapeutic activity of the drugs (the absorption, further 
transport and effect of compounds having biological interest) is 
related to their free concentration available in the plasma, which 
depends, among other factors, on the solubility and ionization 
of the substance. The bilogarithmic (and the slope-intercept) 
method for the evaluation of pKa from solubility measurements 
works well with systems whose behaviour is ideal. We have 
occasion to check the single model in this paper, with some acid, 
base and amphoteric compounds. 

This means that no additional equilibria appears 
superimposed to the conventional acid-base equilibria involved. 
However, the real world is usually more complex that simple 

models assume. Box [29] stated, “All models are wrong”. As a 
matter of fact [30] there are not perfect models, but models that are 
more adequate than others. Any additional complication possible 
(change in ionic strength, subtle effects of buffer components, 
drug precipitation, aggregate formation, etc) is rigorously 
analysed by the Dr. Alex Avdeef (please give a search to Alex 
Avdeef Google Scholar Citations) with the aid of his p-DISOL-X 
program [31] (which uses Stockes-Robinson hydration model for 
the adjustment of ionic strength). A cationic aggregate (dimer) 
model e.g., may be included (private communication) in the study 
of the 8-hydroxiquinoleine system.
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