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ABBREVIATIONS
MALDI IMS: Matrix Assisted Laser Desorption/Ionization 

Imaging Mass Spectrometry; DLBCL: Diff use Large B Cell Lymphoma; 
HIV: Human Immunodefi ciency Virus; GC: Germinal Centre; HSP: 
Heat Shock Protein; TIC: Total Ion Current; GA: Genetic Algorithm; 
NHL: Non-Hodgkin Lymphoma; GEP: Genetic Expression Profi ling; 
FFPE: Formalin Fixed Paraffi  n Embedded 

BACKGROUND
Personalized cancer therapy and disease prognosis relies on 

accurate classifi cation of the tumor. At present, histopathological 
diagnosis is based on information from the clinic, morphological 
and immunophenotypic assessments, and occasionally, molecular 
tests. Th is process is time consuming and off ers limited biological 
or molecular understanding of the disease. Molecular classifi cation 
aims to emphasize the molecular heterogeneity of tumors so as to 
determine markers to improve diagnosis, prognosis, and treatment 
effi  cacy. Matrix Assisted Laser Desorption/Ionization (MALDI) 
Imaging Mass Spectrometry (IMS) is a powerful technology which 
investigates the molecular content of tissues while preserving their 
morphological structure [1]. Th e MALDI IMS technology has various 
applications including; molecular classifi cation of tissue, analysis of 
intra-tumour diversity and determining drug metabolism kinetics 
[2-4]. Th is technology has been applied for molecular classifi cation 
purposes in several cancers including melanoma [5], breast cancer 
[6,7] and pancreatic cancer [8]. Casadonte et al. successfully used 
MALDI IMS to discriminate breast cancer from pancreatic cancer 
metastasis. Djidja and his group created a model that may be used to 
classify pancreatic tumour from normal tissue and adenocarcinomas.

Diff use Large B Cell Lymphoma (DLBCL) is the most commonly 
diagnosed Non-Hodgkin Lymphoma (NHL) subtype, comprising 
of more than a third of NHL cases [9,10]. It is heterogeneous in 
nature, with morphological, molecular and genetic subtypes [11]. 
Genetic Expression Profi ling (GEP) classifi es DLBCL into subtypes 
based on their ‘cell of origin’ phenotype. [12] Classifi ed DLBCL 
into Germinal Centre (GC) and Activated B Cell (ABC) subtypes. 
Th e GEP technology is not readily accessible to most hospitals due 
to specialised training and high costs involved. As a result, various 

immunohistochemistry based classifi cation methods have been 
developed to model the GEP classifi cation scheme [13-15]. Some 
of these have high concordance with GEP and are currently used 
at clinical settings [13,15]. Given the heterogeneity of DLBCL, we 
thought it would benefi t from the technology of MALDI IMS as it 
may be used in disease subtyping and possibly even discrimination 
from other types of high grade B cell lymphomas.

In this study, we propose a classifi cation model that may be 
used either in conjunction with the immunohistochemistry-based 
algorithms or as a standalone for subtyping of DLBCL cases.

MATERIALS AND METHODS
Materials used

All reagents were bought from Sigma-Aldrich (Merck KGaA, 
Darmstadt, Germany) unless otherwise stated.

Sample details

Th e study was only limited to twenty three DLBCL Formalin 
Fixed Paraffi  n Embedded (FFPE) tissue samples, due to fi nancial 
constraints. All the samples were collected at the Groote Schuur 
Hospital in Cape Town, South Africa. Th e diagnosis of DLBCL was 
based on the WHO criteria for morphology and immunostaining. 
Burkitt’s lymphoma and plasmablastic lymphomas were excluded 
based on morphology and immunolabeling. Th e grey zone 
lymphomas, bordering between a Burkitt’s lymphoma and DLBCL, 
and Hodgkin’s lymphoma and DLBCL were also excluded. DLBCL 
samples obtained from HIV infected (n = 8) and HIV uninfected 
patients (n = 7) were used as a test set. 

Th e validation cohort consisted of cases from HIV infected (n = 
4) and HIV uninfected (n = 4) DLBCL patients (Table S1). Th e tissue 
from the validation cohort was handled and processed in the exact 
manner as the main cohort. 

Tissue preparation for MALDI IMS

Th e FFPE tissues were prepared for MALDI IMS analysis using 
a workfl ow our laboratory developed. Briefl y, tissue blocks were 
sectioned at 10 μm and placed onto poly-L- coated ITO slides. Tissue 
sections were then dewaxed with xylene and cleared with graded 
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ethanol washes. Trypsin (Promega, Madison USA) solution (5 ng/
μl in 50% acetonitrile; 50 mM ammonium bicarbonate, pH 8) was 
deposited onto tissue sections using the ‘Trypsin deposition’ method 
on the Bruker Imageprep instrument. Digestion occurred for 15 
hours at 37°C. Th e tissue sections were then coated with matrix (7 
g/l in 60% acetonitrile, 0.2% trifl uoroacetic acid) prior to MALDI 
IMS analysis Ultrafl eXtreme MALDI-TOF/TOF mass spectrometer 
instrument. Mass spectra were acquired at a spatial resolution of 100 
μm in refl ectron mode. Ions were collected for the mass range of m/z 
700- 3500.

MALDI IMS data analysis

MALDI IMS generates a large amount of data per sample. 
Th erefore, only a limited number of mass spectra from tumour regions 
in the sections were exported for subsequent statistical analysis 
using ClinProTools soft ware. Th e data from both the discovery and 
validation cohort were analyzed using the same settings. A hundred 
(100) randomly chosen spectra from each sample were compared 
between the two DLBCL subtypes. Spectral pre-processing included 
TopHat baseline correction, and TIC normalization. Th e Genetic 
Algorithm (GA) model was used for classifi cation. Th e k-nearest 
neighbor parameter in the algorithm setting was set to 3. 

nLC-MS/MS analysis for protein identifi cation

Th e tissue sections were washed in 70% ethanol to remove matrix. 
Th ey were then subjected to in situ trypsin digestion. Th e extraction 
of the peptides was carried out using 20 μl of 10% Acetonitrile. Th e 
acetonitrile was pipette up and down the entire tissue section. Th e 
extract was then concentrated to 2 μl and taken through a C18 zip 
tip. Seven microliters were subjected to separation on an EASY-
nLC II connected to a Proteineer fc II protein spotter controlled 
through HyStar soft ware. Peptide separation was performed on a 
EASY column (2 cm, 75 μm ID, 5 μm, C18) followed by an analytical 
column (10 cm, 75 μm ID, 3 μm, C18) with a fl ow rate of 100 μl/hr 
using a 48 minute gradient run. Fractions were collected on a Bruker 
MTP 384 AnchorChip target (Bruker Daltonics, Bremen, Germany). 
MALDI-TOF MS and LIFT MS/MS were acquired for all fractions 
on a Bruker Ultrafl eXtreme MALDI-TOF/TOF mass spectrometer 
(Bruker Daltonics, Bremen, Germany). Peptides were ionized with 
a 337 nm laser and spectra acquired in refl ector positive mode at 
28kV using 100 laser shots per spectrum with a scan range of m/z 700 
-4000. Spectra were internally calibrated using peptide calibration 
standard II (Bruker Daltonics, Bremen, Germany). Peptide spectra of 
accumulated 4,000 shots were automatically processed using WARP 
LC 3.2 soft ware (Bruker Daltonics, Bremen, Germany). Database 
interrogation was performed with the Mascot algorithm using the 
SwissProt database on a ProteinScape 3.0 workstation. Th e Homo 
sapiens and Viruses databases were searched using the following 
parameters: enzyme specifi city was set to trypsin allowing for a missed 
cleavage of 1. Carbamidomethyl was set as a fi xed modifi cation and 
oxidation as a variable modifi cation. Th e maximum allowed mass 
deviation was set to 50 ppm for monoisotopic precursor ions and 0.7 
Da for fragments.

RESULTS 
Spectra randomly chosen from the tumour region of each 

sample were exported and compared (Figure S1). Th ere were 27 
peptide ions which were diff erentially expressed between the GC 
and non-GC subtypes in the HIV negative cohort (Table 1). Th e 
diff erentially expressed peptide ions in each cohort were used to 

generate a classifi cation model distinguishing between GC and non-
GC subtypes for each HIV cohort. Th e most discriminatory peptide 
ions were included in the model and were given diff erent weightings. 
Th e model distinguishing between the DLBCL subtypes of the HIV 
negative cohort contained nine peptide ions (Table 2). Th ese had 
100% recognition ability within the test set and 100% ability score to 

Figure S1: An extract of the swissprot report showing the peptides identifi ed, 
scores and where they matched to the protein sequence.

Table 1: The differentially expressed peptide ions between germinal centres 
and non-GC of DLBCL in HIV negative cases and HIV positive cases.

GC/non-GC- Regulation pattern GC/non-GC+ Regulation pattern

713.5531 Up 788.71 Up

757.6075 Up 789.71 Up

788.6508 Up 805.72 Up

789.641 Up 928.78 Up

801.6496 Up 944.797 Up

805.6532 Up 945.78 Up

816.6384 Down 1032.93 Up

836.6418 Down 1039.35 Up

845.3651 Up 1105.56 Down

848.605 Down 1199.16 Up

849.6152 Down

850.6619 Down

861.2948 Up

898.6963 Down

940.7182 Up

944.7667 Up

945.7494 Up

957.7619 Up

966.7403 Up

971.7643 Up

978.8001 Up

988.7306 Up

1032.823 Up

1039.766 Up

1105.822 Down

1199.041 Up

1792.199 Down
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correctly predict the validation set (Table 4). Th e peptide ions with 
the highest weighting were m/z 1105.82 (annexin 5), m/z 1199.04 
(heat shock protein 70), m/z 1032.82 (histone H3). 

Th e HIV positive cohort only contained ten diff erentially 
expressed peptide ions between the same groups (Table 1). Th e 
classifi cation model distinguishing between DLBCL subtypes in the 
HIV positive cohort also contained nine peptide ions (Table 3). Th e 
peptide ions with the highest weighting were m/z 928.78, m/z 1032.92 
(histone H3), m/z 1039.85 (60S ribosomal protein L40). Th e model 
had a high ability to correctly predict subtype when used within the 
test set, however this was decreased to 79% when using the validation 
set (Table 4).

DISCUSSION
Our study determined a classifi cation model that enables 

diff erentiation between HIV and non-HIV related DLBCL subtypes. 
Previous studies using MALDI MS for classifi cation purposes did 
not identify the peptide ions contained in their developed models. 
Our study utilises MALDI IMS together with peptide identifi cation 
to classify DLBCL subtypes. Th e two classifi cation models calculated 

had similar proteins which points to the similarities of the disease 
in both HIV contexts. Th e diff erences observed between the two 
DLBCL models may be due to HIV infection or due to diff erences in 
the concentrations of peptide ions (Figure 1A & 1B).

Th e peptides that formed part of the classifi cation models were 
identifi ed using LC-MS/MS. However, not all peptides could be 
identifi ed due to diff erences in the ionisation techniques [16]. Th e 
proteins highlighted in this study have previously been implicated in 
tumourigenesis as well as having a role in prognosis.

GAPDH forms part of the glycolytic pathways but is also involved 
in several other cellular processes such as, apoptosis and proliferation 
[17]. A study by Chiche et al. observed that overexpression of GAPDH 
is associated with aggressiveness (measured as poor prognosis) and 
vascularisation of non-Hodgkin’s lymphoma tumours, via HIF-
1 induction by NF-kB. GAPDH was overexpressed in the more 
aggressive non-GC subtype (Table 1), which has a constitutively 
active NF-κB pathway, thus suggesting a mechanism for the 
aggressive behaviour of this subtype [18]. Th e prolonged expression 
of NF-κB has been hypothesised to be responsible for the tumour 
aggressiveness of the non-GC subtype [18,19].

Enolase, a plasminogen receptor, is involved in concentrating 
proteolytic plasmin activity on the cell surface of haematopoietic and 
endothelial cells, suggesting a role in regeneration, immune response 
and metastasis [20-22]. Studies have shown that an upregulation of 
enolase results in cancer invasion and provides therapy resistance 
[23-25]. Our study observed an upregulation of enolase in the 
non-GC subtype of the HIV negative group (Table 1), suggesting 
that resistance to therapy may possibly be a reason to explain poor 
prognosis in this subtype.

Heat Shock Proteins (HSP) are a family of proteins produced by 
cells in response to stress [26]. Levels of the HSP are elevated in many 
cancers [27,28]. Th e over-expression of HSP signals a poor prognosis 
and poor response to therapy [30]. HSP70 (m/z 1199) was elevated in 
the non-GC group (Table 1), suggesting its involvement in this group 
showing advanced stage disease. 

Ribosomal proteins are commonly upregulated in cancer [30,31]. 
Th ey are said to participate in tumourigenesis by their extra ribosomal 
functions [32,33]. Although the ribosomal protein (m/z 789 and m/z 
1039) were diff erentially expressed in both cohorts, they only have a 
discriminatory role in the HIV positive group. Th e overexpression 
of ribosomal protein L40 (m/z 1039) has been shown to play a role 

Table 2: The model generated from the GC v/s non-GC comparison set of the 
HIV negative cohort.

Mass Weight Identity

1105.82 2.0036 Annexin 5

1199.04 1.2543 Heat shock protein 70

1032.82 1.014 Histone H3

850.66 0.7533 Histone H2A

971.76 0.46277

988.73 0.6916

805.65 0.2335 GAPDH

957.76 0.4524 Enolase A

816.64 0.7786 Histone H2B

Table 3: The model generated from the GC and non-GC comparison set of the 
HIV positive cohort.

Mass (m/z) Weight Identity

945.78 1.34801 Histone H2A

1032.92 1.6253 Histone H3

1199.14 1.06205 Heat shock protein 70

1039.85 1.3899 60S ribosomal protein L40

788.71 1.2026 Histone H3

789.7 1.1877 40S ribosomal protein S16

928.78 2.2185

944.82 1.3055 Histone H2A

1105.84 1.02309 Annexin 5

Table 4: The recognition and validation values of genetic algorithm model 
generation and validation.

Comparison set Recognition 
Ability Cross Validation External 

Validation
GC and non-GC, 

HIV-
100% 98.5% 100%

GC and non-GC, 
HIV+

100% 100% 79.4%

Table S1: The baseline characteristics of the cases used for MALDI IMS 
analysis.

Test Set Validation set

HIV - DLBCL HIV + DLBCL HIV - DLBCL HIV + DLBCL

Number of cases 7 8 4 4

Age (Yrs) 59.3 39.25 54.75 38.5

Gender (F:M) 5: 2 5:3 3:1 3:1

Non-GC Subtypes

Age 61 34.25 63 34.3

Gender 2:2 3:1 1:1 2:0

GC subtype

Age 57 44.25 46.5 42.5

Gender 3:0 2:2 2:0 1:1
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in tumourigenesis and tumour aggressiveness [34,35]. Th erefore, the 
high weighting related to this protein in the model may signify a role 
in the tumour aggressiveness of the non-GC subgroup.

Th e proteins mentioned above show an increased expression in 
the non-GC subtype in both contexts and may be involved in the 
aggressiveness of this subtype. 

Th e various histone protein families that are commonly isolated 
in MALDI IMS experiments [5,8,36] may be due to the technical 
limitations associated with MALDI IMS which favours both high 
abundant and soluble proteins [37]. Th e histone proteins were 
highly weighted in both cohorts, signifying their importance in the 
classifi cation model. Specifi cally, histone H3 and H2A had high 
weightings which allowed discrimination between GC and non-
GC subtypes (Table 2 and Table 3). Expression of histone H4, H2B, 
and H3 were found to positively correlate with patient survival 
in melanoma lymph node metastases [35]. Increased expression 
of histone H2A and H3 were observed in the GC subtype in both 
HIV context, suggesting an involvement in the favourable prognosis 
experienced by this group. 

Th e proteins identifi ed in this study have previously been 
implicated in tumourigenesis as well as having a role in prognosis. 
Th erefore, further research is warranted on the potential targeting of 
these proteins for treatment.

CONCLUSIONS
Th is study developed protein classifi cation models that 

discriminates between GC and non-GC subtypes of DLBCL in both 
HIV and non-HIV contexts. Th e accuracy of these models was tested 
on a separate cohort with high predictive power, especially in the HIV 
negative group. In addition, we have extrapolated the m/z mass ions 
in the model for protein identifi cation. Finally, we also showed that 
MALDI IMS can be used to correctly classify DLBCL subtypes. Th is 
technology may be used together with routine diagnostics to confi rm 
DLBCL subtypes.
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