Lessons Learned After Two Years of Living with COVID-19: A Special Focus on Findings from Multidisciplinary Pan African Studies

Sevidzem Silas Lendzele1-3*, Agossou A Essé1,4, Koumba Aubin Arme1-3, Mints-Nguema Rodrigue1-3, Luc Djogbenou1,4, Nonvignon Marius Kêdoté1,4, Mavoungou Jacques François1-3, Fatou Bintou Sarr1,5,6 and ALSO-COVID-19 Consortium1

1Thematic Program of Health Research, African and Malagasy Council for Higher Education (CAMES)
2Department of Animal Biology and Ecology, Tropical Ecology Research Institute, Libreville, Gabon
3International University of Libreville, Libreville, Gabon
4Department Health Environment, Regional Institute of Public Health- Comlan Alfred Quenum, University of Abomey-Calavi, Ouidah, Benin
5Laboratory of Physiology and Functional Explorations, UFR of Health Sciences, Iba Der Thiam University of Thies, Thies, Senegal
6International Research Laboratory IRL 3189 Environment-Health-Society

*Address for Correspondence: Sevidzem Silas Lendzele, Department of Animal Biology and Ecology, Tropical Ecology Research Institute, Libreville, Gabon, ORCID ID: orcid.org/0000-0001-5254-3347; E-mail: sevidzem.lendze@gmail.com

Submitted: 02 June 2022; Approved: 14 June 2022; Published: 15 June 2022

Copyright: © 2022 Lendzele SS, et al. This is an open access article distributed under the Creative
ABSTRACT

The Coronavirus 2019 (COVID-19) has spread globally, and Africa is not excluded. The disease threatens to render millions of people poor. This current review study focuses on key areas such as its clinical features, epidemiology, genetics, spillover hosts and socio-economic impacts two years after the report of the first cases in Africa. Internet search was conducted, and scientific papers were selected using the following criteria: papers reporting on the key aspects in Africa, papers with complete information, literature review papers were excluded, papers with only abstracts were not considered, papers on other aspects which are not subject of interest were not eligible. Based on the stated criteria, 54 papers were retained. After two years of living with the pandemic, African researchers acquired some lessons. They made some recommendations for future pandemics as such: a) the experience of Africa could serve as a lesson for the global population based on its long history of living with coronaviruses and dealing with them; b) there is a need to reinforce the health care system in preparation for future pandemics of this magnitude as well as not to neglected other important existing diseases; c) the imposition of mitigation policies such as lockdown should be adapted to the local situation of each country to avoid long term consequences such as food insecurity, adolescent pregnancy, gender-based violence; c) the regions with a high diversity of bat hosts and other animal species should be regularly monitored for the emergence of novel coronaviruses, d) financial support should be made available to promote scientific research in Africa. As COVID-19 remains a priority disease, the lessons learned after two years of living with it should prepare the continent for responding holistically to future pandemics.

Keywords: COVID-19; Clinical features; Epidemiology; Genetics; Hosts; Economic impact

INTRODUCTION

The Coronavirus Disease 2019 (COVID-19), with the first case in Africa, reported on 14th February 2020, spread rapidly globally, resulting in a pandemic still ongoing in several countries. Currently, five SARS-CoV-2 Variants of Concern (VOCs) have been described in the European Union: the Alpha, Beta, Gamma, Delta, and Omicron variant of concern [1]. These variants continue to spread to other continents, including Africa. The COVID-19 burden is heterogeneous globally and has been low in Africa [2,3], but its socio-economic impact has been reported to be high in the continent [4]. As of March 02, 2022, the number of confirmed COVID-19 cases in Africa was 11,549,076, which represented around 2.62% of the infections around the world. This pandemic seriously impacted almost all African countries’ economic and social sectors, and it is threatening to render close to 58 million people poor [5]. After two years of living with the COVID-19 pandemic, it is crucial to document the lessons learned from studies conducted in Africa to get ready for future pandemics of similar magnitude.

At the start of the COVID-19 pandemic, several projects were financed to generate data to assist decision-makers to efficiently tackle the disease. One of such projects was the Pan African project entitled “African Life Story of COVID-19” (ALSO-COVID-19). The project is executed by the CAMES Health Research Topics Programme (FTR-Santé CAMES) researchers and strategic partners from CAMES countries. This ALSO-COVID-19 project was designed to provide a better understanding of the epidemiological, clinical, physiopathological, socio-cultural, economic and political determinants of COVID-19 in the African context in order to propose an appropriate and effective response.

This current study aims at conducting a systematic review on the following topics: 1) clinical, immunological, and epidemiological aspects; 2) socio-economic impact of the disease, 3) genetic aspects and 4) spillover hosts of the virus.

MATERIALS AND METHODS

Study framework

The current review of published papers on COVID-19 from research studies conducted in Africa was realised from March 2020 to March 2022.
Table 1: Key findings from multidisciplinary studies on COVID-19 in Africa.

<table>
<thead>
<tr>
<th>SN</th>
<th>Year</th>
<th>Author</th>
<th>Summary of Key findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2021</td>
<td>Adams, et al.</td>
<td>This study reported that age structure of sub-Saharan Africa is the leading factor of the low morbidity and mortality of COVID-19 compared to other regions of the world. Social mitigation strategies to curb its spread, such as lockdowns, have resulted in severe economic and societal consequences in terms of food security, adolescent pregnancy, gender-based violence, and disruptions in treating other diseases.</td>
</tr>
<tr>
<td>2</td>
<td>2022</td>
<td>Adjei, et al.</td>
<td>This study found different variants of COVID-19 in Africa.</td>
</tr>
<tr>
<td>3</td>
<td>2021</td>
<td>Amouzouvi, et al.</td>
<td>This study found that R0 ≤ 4 at the start of the pandemic has since fallen to R0 ~ 1.</td>
</tr>
<tr>
<td>4</td>
<td>2020</td>
<td>Asante and Mills</td>
<td>This study established for Ghana that socio-economic impacts of the COVID-19 pandemic in marketplaces were evident in the increased food prices, the economic hardships associated with the lockdown directive, and the forcible relocation and decongestion exercises to enforce social distancing among traders.</td>
</tr>
<tr>
<td>5</td>
<td>2021</td>
<td>Babiker</td>
<td>This study highlighted that the weak social determinants of health, such as poverty, inequality and multiple vulnerabilities, have aggravated the structural impact of COVID-19 on lives and livelihoods in Sudan. The absence of adequate economic and social constitutional rights (ESCR) protection in Sudan’s legislative framework has therefore exacerbated the vulnerability of large sectors of the population and meant that the state lacked the legal structures and tools to respond to the pandemic.</td>
</tr>
<tr>
<td>6</td>
<td>2021</td>
<td>Bouba Y, et al.</td>
<td>They found that diabetes prevalence, number of nurses and GHS index were found to be significantly associated with COVID-19 deaths per one million 61 population.</td>
</tr>
<tr>
<td>7</td>
<td>2020</td>
<td>Bukuluki P, et al.</td>
<td>They found that lockdown has affected refugee livelihoods and increased income insecurity, sexual and gender-based violence and anxiety.</td>
</tr>
<tr>
<td>8</td>
<td>2021</td>
<td>Basu JK, et al.</td>
<td>They found that COVID-positive pregnant South African women were commonly symptomatic, but incidence of adverse fetal outcomes was low. High rate of preterm labor, macerated stillbirths, and maternal deaths was a concern.</td>
</tr>
<tr>
<td>9</td>
<td>2021</td>
<td>Daw MA, et al.</td>
<td>This study found that older patients infected with COVID-19 were at a risk of higher disease severity and mortality. Broad geographic variability and spatio-temporal spread variation of the COVID-19 pandemic in Libya was observed.</td>
</tr>
<tr>
<td>10</td>
<td>2021</td>
<td>Delahay RJ, et al.</td>
<td>They highlighted the potential for exposure, onward transmission and persistence of SARS-CoV-2 in selected wild mammals (bats, canids, felids, mustelids, great apes, rodents and cervids).</td>
</tr>
<tr>
<td>11</td>
<td>2021</td>
<td>Edem B, et al.</td>
<td>They found that the African continent hosts considerably fewer COVID-19-related research compared to other parts of the world. This may have implications on scientific evidence available for implementing COVID-19 control efforts.</td>
</tr>
<tr>
<td>12</td>
<td>2021</td>
<td>Forbes KM, et al.</td>
<td>They reported that comprehensive systems for early detection and containment of wildlife virus spillover and emergence remain one of our strongest responses against the threat posed by zoonotic viruses including COVID-19.</td>
</tr>
<tr>
<td>13</td>
<td>2021</td>
<td>Fouda Mbarga N, et al.</td>
<td>They found in Cameroon that age (40-70), male gender, HIV infection, lung disease, dyspnoea and fatigue were associated with severe COVID-19.</td>
</tr>
<tr>
<td>14</td>
<td>2021</td>
<td>Frempong NK, et al.</td>
<td>This study reported Ghana’s R0 as 3.21.</td>
</tr>
<tr>
<td>15</td>
<td>2021</td>
<td>Geldenhuys M, et al.</td>
<td>This study found for Africa that more surveillance has been initiated among bat populations (26,000 bats tested) than other wildlife and domestic animals. Though coronaviruses have been identified from approximately 7% of the total bats tested, surveillance among other animals identified coronaviruses in less than 1%.</td>
</tr>
<tr>
<td>16</td>
<td>2021</td>
<td>Gudina EK, et al.</td>
<td>This study from Ethiopia reported that COVID-19 control was challenged by lack of robust local scientific evidence, and the pandemic control measures were not adapted to local context and the outbreak patterns.</td>
</tr>
<tr>
<td>17</td>
<td>2021</td>
<td>Guleid FH, et al.</td>
<td>These authors reported that Africa’s contribution to global health research including COVID-19 is low (1.3%) considering the high burden of infectious disease on the continent.</td>
</tr>
<tr>
<td>18</td>
<td>2022</td>
<td>Hosch S, et al.</td>
<td>This study reported a person from Equatorial Guinea to be co-infected with Beta and Delta VOCs.</td>
</tr>
<tr>
<td>19</td>
<td>2021</td>
<td>Inzaule SC, et al.</td>
<td>In Africa, COVID-19 caused reduced access to healthcare services including testing, treatment, and care support services, to structural impacts on drug stockouts, resource shortages, and malnutrition.</td>
</tr>
<tr>
<td>20</td>
<td>2022</td>
<td>Iyaniwura SA, et al.</td>
<td>This study reported estimates of COVID-19 across Africa to vary between 1.98 (Sudan) and 9.66 (Mauritius), with a median of 3.67.</td>
</tr>
<tr>
<td>21</td>
<td>2021</td>
<td>Jaspard M, et al.</td>
<td>This study showed that in referral health centers in west Africa (Burkina Faso and Guinea), the risk of death was higher in men, people aged 60 years and those with chronic hypertension.</td>
</tr>
<tr>
<td>22</td>
<td>2022</td>
<td>Koeppe KN, et al.</td>
<td>In South Africa, one health genomic surveillance identified transmission of a Delta variant from a zookeeper to three lions.</td>
</tr>
<tr>
<td>23</td>
<td>2022</td>
<td>Këdôté NM, et al.</td>
<td>In Benin, the following risk factors related to COVID-19 were identified including lack of hand washing, permanent usage of air condition at workplaces, lack of knowledge about protective measures and no knowledge on the coronavirus incubation period.</td>
</tr>
<tr>
<td>24</td>
<td>2021</td>
<td>Kohnert D</td>
<td>They found that COVID-19 is threatening to push up to 58 million people into extreme poverty.</td>
</tr>
<tr>
<td>25</td>
<td>2021</td>
<td>Kumakamba, et al.</td>
<td>In bat samples from the Democratic Republic of Congo and Republic of Congo, RNA most closely related to sequences of the human common cold coronaviruses 229E or NL63 (> 80% nucleotide identities) was detected.</td>
</tr>
<tr>
<td>26</td>
<td>2021</td>
<td>Lamptey, et al.</td>
<td>This study showed that the duo variants ORF1ab/RdRp 4715L and S protein 614G variants, which are strongly linked to fatality rate were not significantly and positively correlated with fatality rates.</td>
</tr>
<tr>
<td>27</td>
<td>2022</td>
<td>Lekana-Douki S, et al.</td>
<td>Phylogenetic analysis of human samples from Gabon revealed that five sequences of the spike S gene showed that two sequences had the D614G mutation.</td>
</tr>
</tbody>
</table>
This study reported that multiple genetic and immunologic factors may be involved in the severity of COVID-19 in African
individuals compared with the rest of
the global population. One of these factors include direct actions of Plasmodium
falciparum in the pathogenesis, expression of caspase-12, higher levels of
LAIR-1-containing antibodies, and differential glycoporphins expression.

This study reported that COVID-19 seropositivity in South Africa was 6.22-fold more likely in vaccinated (93.1%) vs
unvaccinated (68.4%) individuals.

This study conducted in Gabon led to the identification of alphacoronaviruses in H. gigas and H. cf. ruber
and betacoronaviruses in H. gigas. All Alphacoronavirus sequences clustered with Human coronavirus 229E (HCoV-229E).

This study found that among central African respondents, more men than women lost their businesses and contracted
COVID-19 infections. Multivariable analysis revealed that respondents from East, Southern and Central Africa reported
significantly higher impact of COVID-19.

This study found that scholarly ties of North African countries were above all with the Kingdom of Saudi Arabia. In
terms of number of publications, South Africa and Egypt were among the most productive countries.

This study showed that PCR-negative/IgG-positive participants exhibited a nasal and systemic cytokine signature
analogous to PCR-positive COVID-19 participants, predominated by chemokines and neutrophils and distinct from
PCR-negative/IgG-negative participants. PCR-negative/IgG-positive participants had increased propensity for
Staphylococcus aureus and Streptococcus pneumoniae colonisation. PCR-negative/IgG-positive individuals with high
COVID-19 clinical suspicion had inflammatory profiles analogous to PCR-confirmed disease.

In the Democratic Republic of Congo, high mortality among patients aged < 20 years and with severe/critical disease.

In six sub-Saharan African countries (Democratic Republic of the Congo, Ghana, Kenya, Nigeria, South Africa,
Uganda) a cohort study of children and adolescents hospitalized with COVID-19, showed high rates of morbidity and
mortality were observed among infants and patients with noncommunicable disease comorbidities.

This study attempts to show the action of immunomodulatory factors such as intestinal parasites, malaria infections,
and BCG vaccine, cross immunization on COVID-19.

In wildlife from Cameroon multiple different variants of HCoV-229E-like viruses were detected.

They found that novel coronavirus are likely to infect a greater number of host species than viruses from other
families.

This study revealed that three lineages (B.1.1.54, B.1.1.56 and C.1) spread widely in South Africa during the fi rst wave,
and B.1.1.56 and C.1) spread widely in South Africa during the fi rst wave,

This study showed that during COVID-19 pandemic, post-mortem tests revealelod an unconfi rmed case of COVID-19
in Ghana and the client was left unattended to and died, having spent 8 days on the ward.

This study reported the following common symptoms of COVID-19 including fever, cough, headache, and breathing
problems.

This study found that low incidence of COVID-19 in malaria-endemic regions supports the hypothesis that COVID-19
poor prognosis is prevented by malaria.

This study found that multiple genetic and immunologic factors may be involved in the severity of COVID-19 in African
people. One of these factors include direct actions of Plasmodium
falciparum in the pathogenesis, expression of caspase-12, higher levels of
LAIR-1-containing antibodies, and differential glycoporphins expression.

This study highlighted that the onset of COVID-19 in South Africa brought to the fore systemic weaknesses in the
quality of service delivery such as water and sanitation services, housing, healthcare, and infrastructure in various
communities across the country.

They found that novel coronavirus are likely to infect a greater number of host species than viruses from other
families.

This study found that among central African respondents, more men than women lost their businesses and contracted
COVID-19 infections. Multivariable analysis revealed that respondents from East, Southern and Central Africa reported
significantly higher impact of COVID-19.

This study found that low incidence of COVID-19 in malaria-endemic regions supports the hypothesis that COVID-19
poor prognosis is prevented by malaria.

This study reported that in Africa, COVID-19 had a low to moderate mortality rate. Eco-epidemiological data on the
disease is weak and lacking for Africa.

This study found that novel coronaviruses are likely to infect a greater number of host species than viruses from other
families.

This phylogenomic analysis study of SARS-CoV-2 strain showed that it belonged to lineage B.1.1., sharing the last
common ancestor with SARS-CoV-2 strains recovered from South Africa.

This study showed that during COVID-19 pandemic, post-mortem tests Revealed an unconfirmed case of COVID-19
in Ghana and the client was left unattended to and died, having spent 8 days on the ward.

This study reported the following common symptoms of COVID-19 including fever, cough, headache, and breathing
problems.

This study revealed that three lineages (B.1.1.54, B.1.1.56 and C.1) spread widely in South Africa during the fi rst wave,

This study showed that during COVID-19 pandemic, post-mortem tests Revealed an unconfirmed case of COVID-19
in Ghana and the client was left unattended to and died, having spent 8 days on the ward.
people (≥ 60 years) are at risk of the disease severity [9,13], a cohort study in six sub-Saharan African countries indicated multisystem inflammatory syndrome in children with COVID-19 [14]. A study conducted on pregnant women in South Africa revealed cough and hypertension as common COVID-19 clinical signs and symptoms were common in HIV positive women and with comorbidities. The complications of this disease in pregnant women are preterm labour and macerated stillbirths [12]. From most reports, the typical clinical signs associated with COVID-19 were: loss of taste, abdominal pains, myalgia/arthritis, dyspnoea, fatigue, fever, cough, headache, and breathing problems [11,12,15,16].

Although COVID-19 presents low morbidity and mortality in Africa [2], as reported in a study from DR Congo [11], several reports present gender as a risk factor as males are more vulnerable than their female counterparts [9,10,13]. However, the conundrum of low COVID-19 mortality burden in SSA was suggested to be due to the following: sociodemographic age structure, widespread control methods [2], early Government community-wide actions, population distribution, social contacts, the prevalence of pre-existing conditions, trained immunity, genetic constitution, and broader socio-cultural dynamics [17]. Furthermore, multiple genetic and immunologic factors may be involved in the severity of COVID-19 in the African population compared to the rest of the global population [18]. These immunomodulatory factors include direct action of malaria, intestinal parasites, BCG vaccine and cross immunisation [19,20]. Indeed, a low incidence of COVID-19 in malaria-endemic regions of Africa supports the hypothesis that COVID-19 poor prognosis is prevented by malaria. It is assumed that malaria could link the reported low incidence of COVID-19 in Africa [3,21].

The SARS-CoV-2 continues to spread in Africa, and recent reports indicate that the basic reproduction number in the continent has declined from R0 ≤ 4 to R0 ~ 1 [22]. Furthermore, for some countries in West Africa, Southern Africa, North Africa, East Africa, Central Africa, and African Islands, the R0 ranges from 1.98 to 9.66 [23].

SARS-CoV-2 variants

The severe acute respiratory syndrome coronavirus 2 « SARS-CoV-2 » caused an outbreak of viral pneumonia in December 2019 that became the global COVID-19 pandemic. Since then, SARS-CoV-2 has naturally evolved. Whenever the virus replicates, there is a change for genetic mutation.

The WHO has identified seven VOIs1, four VOCs2 and no VHCs3. Three of the four VOCS-Alpha, Beta, and Delta-have been detected in 46 African countries. Alpha has been observed in 36 countries. Beta has been identified in 32 countries. Delta, the most recent VOC to become the global COVID-19 pandemic, has been confirmed in 14 African countries. Seven countries - Democratic Republic of the Congo (DRC), Ghana, Kenya, Malawi, Mauritania, South Africa and Uganda - have shown all three variants [https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19--25-may-2021]. The outbreak of COVID-19 in most African countries was initiated by importations predominantly from Europe, which reduced after the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many VOCs, such as B.1.351, B.1.525, A.23.1, and C.1.1. Little is known about the up-to-date prevalence of genomic and geographical variations of the SARS-CoV-2 virus on the African continent [24]. Similarly, the progression of the SARS-CoV-2 pandemic in Africa has been heterogeneous, and the full impact is not yet well understood [25].

In Gabon, the following VOIs have been identified such as - The British Variant (B.1.1.7), Variant B.1.525, South African Variant (B.1.351) and Indian Variant in samples from international travellers [26]. In Zambia, phylogenetic analysis of patient samples revealed the lineage B.1.1 [27]. In Guinea, three distinct SARS-CoV-2 variants have dominated the epidemiological landscape since March 2020. In this country, a case of co-infection of two SARS-CoV-2 VOC, Beta and Delta, in a clinically asymptomatic and fully COVID-19 vaccinated man was identified [28]. Three lineages (B.1.54, B.1.1.56 and C.1) have spread widely in South Africa during the first wave [31]. The SARS-COV-2 Omicron variant detected in South Africa in November 2021 was demonstrated to be widespread in the country [32,33].

Socio-economic impact outcomes

The spread and impact of COVID-19 cases have been reported to be heterogeneous. Even within the same continent as Africa, environmental, sociocultural, economic, population density, and political differences could bring about discrepancies in the disease transmission dynamics. Indeed, it has been reported that Eastern and Southern African countries were adversely affected by the COVID-19 pandemic during lockdown [4]. During the COVID-19 pandemic, the governments of the various countries developed strategies to curb its spread. These rules were enforced at all levels of the society, including: public places, schools, offices, markets, and hospitals. The application of physical distancing and installation of sanitary taps targeted public areas and health facilities. Also, other countries like Uganda included refugee camps in their control program [34]. However, in Ghana, the imposition of preventive measures such as closing markets to ensure social distancing and decongestion has led to increased food prices and economic hardship [35]. Interestingly, another report from Ghana showed that the imposition of public health interventions such as border restrictions, intra-city movement, quarantine and isolation during the first phase of the pandemic reduced COVID-19 incidence [36]. In the case of Benin, risk factors associated with COVID-19 cases were lack of handwashing, constant usage of air conditioners in workplaces, little knowledge of protective measures and lack of knowledge of the coronavirus incubation period [37].

The health sector in most African countries was affected by the COVID-19 pandemic. In Ghana, several patients suspected of flu-like symptoms are sometimes denied the care they deserve due to the stigma associated with COVID-19, often in cases where laboratory tests are absent [21]. The COVID-19 pandemic presents multifaceted challenges to many healthcare programs, such as reduced access to healthcare services, including testing, treatment, drug stockouts, and malnutrition [38]. A report from South Africa indicated that COVID-19 has caused a weakness in the quality of service delivery such as water and sanitation services, housing, healthcare and

1Variants of Interest (VOI) are those that are suspected to evade the protection conferred by vaccines or to cause more severe disease or are more contagious than the original strain [29].
2Variants of Concern (VOC) is when data confirm that they cause one or more of the outcomes listed above for VOIs.
3Variants of High Consequence (VHC) are the last class and is a variant that has clear evidence that prevention measures or Medical Countermeasures (MCMs) have significantly reduced effectiveness relative to previously circulating variants [30].
infrastructure [39]. The challenges of COVID-19 in Ethiopia are the lack of robust local scientific data and the pandemic control measures were not adapted to the local context and the outbreak patterns [40]. In Africa, estimates have already shown that many excess deaths, especially in the SSA region, will result not from COVID-19 but from disruptions in malnutrition programs and interruptions in implementing immunisation programmes [17,41].

In Sudan, the COVID-19 impacted the economic and social rights of its citizens in the context of a fragile democratic transition and suspended constitutionalism [42]. The author argues that the pandemic has seriously affected the livelihood of vulnerable populations and their right to live dignified life. It has also led to the revival of modes of emerging rule and contributed to the slowing down of envisaged reforms. Low health system capacity, clinical and socio-economic factors are predictors of the reported burden of COVID-19 in Africa [43].

Spillover hosts

Most emerging dangerous human viruses, such as the SARS-CoV-2, have originated from wild animal hosts. Ongoing projects such as « ALSo-COVID-19 », « PREDICT », « Global Virome » has as aim to develop predictive tools that will enable the inference of the zoonotic potential of the increasing number of newly identified wildlife viruses from their genetic sequence. Comprehensive systems for early detection of wildlife virus spillover remains a vital response tool against the threat posed by zoonotic viruses [44].

More surveillance has been conducted among bat populations than other wildlife and domestic animal host species [45]. One genomic health surveillance revealed SARS-CoV-2 reverse zoonosis in pumas and lions in South Africa [46]. Evidence from this study suggests that the Delta variant was transmitted from a zoo keeper to three lions and the sequences of this strain were similar to that detected in humans in South Africa. In the Congo Basin, bats, rodents, and primates were sampled, and it occurred that bats had a high probability of positive infections with coronaviruses (CoVs) than the others. The detected RNA sequences corresponded to Alpha and Beta CoVs, with most of them similar to known CoVs and others being unique and potentially representing novel viruses [47]. In Cameroon, the CoV RNAs detected in bats represented 17 different genetic clusters, coinciding with the alpha and beta CoVs and sequences resembling human CoV-229E (HCoV-229E) [48]. In Gabon, the alpha CoV sequences identified in bats clustered with the human CoV-229E [49,50]. According to these reports from Cameroon and Gabon, the bat infection rate with CoVs was seasonal. From models predicting virus-host networks, novel CoVs are likely to infect more host species than viruses from other families [51].

CONCLUSION

In conclusion, some of the lessons and recommendations made after two years of living with the COVID-19 pandemic from Pan African studies are as follows:

1) The peculiar experience of African countries in managing the pandemic could serve as lessons for the global population given their long experience living with and tackling infectious diseases such as coronavirus.

2) Regarding the challenges faced by African countries during the pandemic, there is need to design resilient and locally accepted public health interventions for the disease based on local findings. African countries need to learn from each other’s methods used to fight against the pandemic. There is a need to develop the diagnostic capacity by constructing infrastructures and recruiting well-trained personnel to respond to future pandemics. Profiling the genomic and geographical variations of SARS-CoV-2 may be important for future decision-making.

3) Applying the lockdown policy enabled most countries to manage the pandemic, but this measure needs to be adequately implemented or adapted to specific contexts because most African countries faced severe issues such as food insecurity, adolescent pregnancy, gender-based violence, and disruption in treating other diseases.

4) The lesson from spillover host studies is that although bats were identified as potential spillover hosts of SARS-CoV-2, reverse zoonosis from humans in close proximity to wildlife has already been demonstrated in Africa. Hence human-wildlife interfaces should be regularly monitored for the emergence of dangerous zoonotic diseases.

ACKNOWLEDGMENT

The authors would like to thank the Macky SALL Research Fund of the African and Malagasy Council for Higher Education: 2020-2022 for supporting this study.

REFERENCES

12. Basu JK, Chauke L; Cert Maternal and Fetal Medicine, Magoro T. Clinical
11. Nachega JB, Ishoso DK, Otokoye JO, Hermans MP, Machekano RN, Sam-
10. Fouda Mbarga N, Epee E, Mbarga M, Ouamba P, Nanda H, Nkengi A,
9. Altable M, de la Serna JM. Protection against COVID-19 in African population:
8. Wamai RG, Hirsch JL, Van Damme W, Alnwick D, Bailey RC, Hodgins S,
7. PMID: 34960410; PMCID: PMC8673732.
5. Melissa Couto Zuber. COVID-19 variant of interest vs. variant of concern:
3. Wilkinson E, Giovanetti M, Houriiyah T, San JE, Lessells R. A year of
2. Zoa-Assoumou S, Ndeboko B, Manouana GP, Houechenou RMA, Bikangui

SciELO Citation Index

ISSN: 2644-0032
Asante LA, Mills RO. Exploring the SocioEconomic impact of COVID-19

Pulliam JRC, Schalkwyk C, Govender N, Gottberg A, Cheryl C, Michelle J.

Ogunleye OO, Basu D, Mueller D, Sneddon J, Seaton RA, Yinka-Ogunleye

Bukuluki P, Mwenyango H, Katongole SP, Sidhva D, Palattiyil G. The

Abdool Karim SS, de Oliveira T. New SARS-CoV-2 Variants - Clinical, Public

Bukuluki P, Mwenyango H, Katongole SP, Sidhva D, Palattiyil G. The socio-economic and psychosocial impact of Covid-19 pandemic on urban

Bukuluki P, Mwenyango H, Katongole SP, Sidhva D, Palattiyil G. The socio-economic and psychosocial impact of Covid-19 pandemic on urban

