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INTRODUCTION

Major Depressive Disorder (MDD) is one of the most common 

illnesses with severe impacts on mortality and morbidity [1,2]. 

From the last several decades, many diff erent medications based 

on monoamine neurotransmitters have been used [3,4]. Selective 

Serotonin (5-HT) Reuptake Inhibitors (SSRIs) such as Flouxetine 

(FLX) are the most frequently prescribed class of drugs for clinical 

depression. SSRIs are believed to exert their antidepressant ability 

blocking the reuptake of 5-HT at synaptic terminals, resulting in an 

elevation of extracellular 5-HT concentrations in the limbic regions 

that can act on various critical postsynaptic 5-HT receptors [5]. On the 

other hand, Tricyclic Antidepressants (TCAs) such as Desipramine 

(DMI) are selective for the Norepinephrine (NE) as compared to the 

serotonin transporter. Th e immediate eff ect of DMI is an inhibition 

of the NE Transporter (NET) resulting in an increase in NE [6,7]. 

Besides having a delay of 3–6 weeks for the current antidepressant 

drugs to achieve their antidepressant eff ect, various side eff ects have 

been reported [8]. Moreover, only about half of depressed patients 

taking monoamine-based antidepressants go into full remission [3]. 

Th e precise specifi cation of the neural mechanisms underlying the 

eff ects of antidepressant drugs can identify novel candidates involved 

in the pathophysiology of depression and possible new targets for 

therapeutic intervention.

Peroxisome Proliferator-Activating Receptors (PPARs) are 

ligand-activated transcription factors belonging to the nuclear 

receptor superfamily. Th ree molecular forms of PPAR have been 

identifi ed, namely, PPAR-α, PPAR-β/δ, and PPAR-γ, and all involved 

in many diff erent biological processes [9]. Peroxisome proliferator-

activating receptor-alpha (PPAR-α ) is the predominant PPAR subtype 

highly expressed in the liver, heart, proximal tubules of the kidney 

cortex, the skeletal muscle, the intestinal mucosa, and in the brown 

adipose tissues that are metabolically very active [10]. PPAR-α is an 

important regulator of cellular fatty acid uptake and intracellular fatty 

acid transport, mitochondrial and peroxisomal fatty acid oxidation, 

ketogenesis, and gluconeogenesis [11,12]. It is well known that PPAR 

agonists protect against oxidative damage, infl ammation, apoptosis in 

periphery, recent literature have described the neuroprotective role of 

PPAR agonists in the Central Nervous System (CNS) disorders [13]. 

PPAR-α exerted potential pharmacological properties on oxidative 

stress, infl ammation, leukocyte-endothelium interactions, stem cells, 

and amyloid cascade [14-16]. 

Fibrates are a group of hypolipidemic agents which have been 

in clinical use for several decades in humans [17, 18]. It is well 

established that these agents act as synthetic agonists of PPAR-α 

[10]. Activation of PPAR by fi brates leads to increased hydrolysis of 

triglycerides, stimulation of cellular fatty acid uptake and conversion 

to acyl-CoA derivatives, decreased synthesis of triglycerides and fatty 

acids as well as Very-Low-Density Lipoprotein (VLDL) cholestrol, 

and fi nally increased peroxisomal and mitochondrial beta oxidation 

[17]. It has been shown that treatment of pigs with clofi brate (ethyl-α 

-p-chlorophenoxyisobutyrate), a PPAR-α agonist, stimulates 

mitochondrial and peroxisomal β-oxidation in the liver, muscle, and 

the kidney [19,20]. 

Th iazolidinediones (TZDs) are also a class of anti-diabetic drugs, 

which improve glucose and lipid metabolism reducing insulin 

resistance and used as an adjunctive therapy for treatment of Diabetes 

Mellitus (DM) [21, 22]. Th ey act by binding to the peroxisome 

proliferator-activated receptor gamma (PPAR-γ). Th e PPAR-γ acts as 

a negative regulator of macrophage activation and PPAR-γ agonists 

inhibit the production of infl ammatory cytokines in monocytes [23]. 

In cortical neuron-glia cocultures, PPAR-γ agonists inhibited both 

Lipopolysaccharide (LPS)-stimulated expression of Inducible Nitric 

Oxide Synthase (iNOS) in microglia and the Nitric Oxide (NO) 

release and COX-2 expression in neurons [24]. Similarly, PPAR-γ 

ligands reduced the iNOS expression and attenuated cell death in 

cerebellar granule cells [25]. It has been shown that PPAR-γ agonists 

improve diff erent CNS dysfunctions [26,27]. Systemic treatment with 

PPAR-γ agonists, such as pioglitazone or troglitazone, improved the 

recovery from cerebral ischemia [28,29]. Moreover, antidepressant-

like eff ect of pioglitazone in the Forced Swimming Test (FST) in mice 

has been shown and the role of PPAR-γ receptors stated [30].

Eff ects of fenofi brate, a PPAR-α agonist, on brain ischemia 

indicated that it modulates mechanisms involved in neurorepair and 

amyloid cascade. PPAR-α agonists could check the key points of a 

potential disease-modifying eff ect in stroke [31]. Also, fenofi brate 

was neuroprotective in Parkinson’s Disease (PD)-induced cognitive 

 ABSTRACT

Background: The potential effect of clobibrate, a Peroxisome Proliferator-Activated Receptor alpha (PPAR-α ) agonist, on behavioral 
despair associated with acute exposure to Forced Swim Test (FST) was studied in male rats and further, a possible involvement of 
PPAR-α receptors mediating this effect was suggested. 

Methods: There were two swim sessions. The fi rst was a 15 min pre-test and 24 hrs. Later a second 5 min swim test. The 5 min 
swim test was used for scoring the passive behavior, immobility, and active behaviors, swimming, climbing and diving. Locomotor activity 
was also evaluated using Open Field Test (OFT). The drugs were administered three times at 2, 19, and 24 hrs. Subsequent to the 
initial 15 min pre-test, prior to the 5 min test. Clofi brate was received orally (300 mg/kg, p.o.), Desipramine (DMI), a selective Serotonin-
Norepinephrine Reuptake Inhibitor (SNRI) (10 mg/kg) and Fluoxetine (FLX), a Selective Serotonin Reuptake Inhibitor (SSRI) (10 mg/kg) 
were administered intraperitonealy (i.p.). 

Results: Subchronic clofi brate administration (300 mg/kg, p.o.) attenuated behavioral despair determined by decrease in immobility 
and increase in the active behavior swimming comparable with FLX (10 mg/kg, i.p.). Clofi brate also markedly reduced the number of 
rearing and rearing to the wall. That are mentioned as depression like behaviors in the OFT. However, it did not affect the number of 
crossings. 

Conclusion: Clofi brate as a PPAR-α receptors agonist may have antidepressant-like effect probably through increase in serotonin 
level and this central effect could not be attributed to generalized increase in locomotor activity of the animals.
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impairment in rats [32]. Oleoylethanolamide (OEA) is an endogenous 

lipid mediator acting as a PPAR-α agonist, facilitates memory 

consolidation through noradrenergic activation of the Basolateral 

complex of the amygdala (BLA) [33]. OEA administration could 

modulate the cognitive defi cits [34].

Regarding the above information, we hypothesized that PPAR-α 

receptor agonist might attenuate the behavioral despair when exposed 

to an inescapable situation (forced swim) resemble to the PPAR-γ 

receptor agonists. Th e current study examined the eff ect of clofi brate, 

a PPAR-α receptor agonist, comparing two known antidepressant 

drugs, FLX and DMI on passive, immobility, and active behaviors, 

swimming and diving, in the modifi ed rat FST.

MATERIALS AND METHODS

Chemicals

Clofi brate (ethyl-a-p-chlorophenoxyisobutyrate), fl ouxetine and 

desiperamin hydrochloride were provided by Zahravi Pharmaceutical 

Co. (Tabriz, Iran). 

Animals

Male Swiss Webster rats weighing 200-300 gram (Pasteur 

Institute, Tehran, Iran) were employed. Th e animals were housed 

in polycarbonate cages and maintained on a 12-hrs light: dark cycle 

in a temperature-controlled (22°C) condition. Th e animals had free 

access to food and water. Behavioral studies were carried out in 

the aft ernoon (12:00–4:00 PM). All procedures were carried out in 

accordance with the institutional guidelines for the animal care and 

use committee (NIH US publication, no. 23-86, revised 1985).

Experimental groups

A total of 45 rats were randomly assigned to 5 groups of 9. Th e 

drugs were administered in a sub-chronic manner. Th e drugs were 

administered three times at 2, 19 and 24 hrs. following the initial 

15 min pre-test swim, prior to the 5 min swim test (the second day) 

[35]. All the drugs were freshly diluted in physiological saline except 

for clobibrate which was suspended in olive oil. One group received 

three distinct oral clofi brate administrations (300 mg/kg, p.o. [36,37], 

one group DMI (10 mg/kg, i.p.) [7], one group FLX (10 mg/kg, i.p.) 

[38], control groups received either saline (i.p.) or olive oil (p.o.) as 

vehicles.

Forced Swimming Test (FST)

In our study, behavioral evaluations were carried out in the 

aft ernoon (12:00-17:00) under low illumination. On day fi rst (pre-test 

session), rats were placed individually in a Plexiglas cylinder, 46 cm 

height with a 21 cm internal diameter that was fi lled with water (25°C) 

to a depth of 30 cm. Th e animal was removed aft er 15 min, dried, 

and placed in its home cage. Th e pre-test facilitates the development 

of immobility during the test session and increases the sensitivity 

for detecting antidepressant behavioral eff ects [39]. Th e drugs were 

administered three times at 2, 19 and 24 hrs. Following the initial 15 

min pre-test swim, prior to the 5 min swim test (the second day). 

Twenty-four hrs. Aft er their fi rst exposure (test session), the animals 

were replaced in the swim apparatus for 5 min, and the sessions were 

recorded manually using stopwatch for subsequent analysis. Th e 

5 min swim test was used for analysis of the behavior. Water was 

changed between each swim session to prevent possible eff ects of 

an alarm substance released by rats during the swim session [40]. A 

time sampling technique was used to score several behaviors whereby 

the predominant behavior in at the end of each 5-sec period of the 

300-sec test was recorded. Th e scorer would rate the dominant rat’s 

behavior at that time as one of the above four behaviors [41, 42]. Th e 

rat’s behavior was scored following the complete sampling method. 

Th e behaviors selected for scoring are swimming- the animal displays 

active swimming motions, more than necessary to maintain its head 

above water (usually horizontal) throughout the swim chamber, 

climbing- the rat makes active movements with its forepaws directed 

against the wall- and diving- the entire body is submerged beneath 

the water- behaviors as well as immobility- the animal fl oats in the 

water making only those movements necessary to keep its head above 

water [41,43,44]. 

Open Field Test (OFT) 

Th e OFT was performed to evaluate general locomotor and rearing 

activity of the rats as described by [45]. Th e purpose of including this 

test was to assess the general activity of the animals aft er performing 

FST. Th e OFT [46] provides simultaneous measures of locomotion, 

exploration and anxiety. Th e number of line crosses and the frequency 

of rearing are usually used as measures of locomotor activity, but are 

also measures of exploration and anxiety. A high frequency of these 

behaviors indicates increased locomotion and exploration and/or 

a lower level of anxiety. Th e number of central square entries and 

the duration of time spent in the central square are measures of 

exploratory behavior and anxiety. A high frequency/duration of 

these behaviors indicates high exploratory behavior and low anxiety 

levels. Th e measurement parameters of this test include locomotor 

activity registered as the number of times the animal crosses squares 

and the rearing activity, which was registered as the number of times 

the animal stands upright on its hind legs. Th e central square is used 

because some strains have high locomotor activity and cross the 

lines of the test chamber many times during a test session. Also, the 

central square has suffi  cient space surrounding it to give meaning to 

the central location as being distinct from the outer locations [47]. 

Grooming behavior showed a moderate inverse correlation with the 

behavioral despair factor. On one hand, it suggests that grooming 

may be a good predictive behavior of impaired coping ability when 

the animal faces an uncontrollable stress situation, like FST. On the 

other hand, grooming that is considered a classical variable of OFT, 

appears distributed in both extracted factor and due to that, we 

considered it as an ambiguous variable, suggesting that the behavioral 

despair could have an anxiety component [48, 49]. Th e number of 

defection and urination as a level of anxiety were also recorded [50]. 

Th e open-fi eld test chamber consisted of a white Plexiglas bin 

(56 × 38 × 30 cm) with the fl oor divided into 16 equal squares grids 

clearly drawn on the surface. An observer counted the number of line 

crosses during the 5 min test, recording the total line crosses at the 

end of each minute interval. Rats were gently placed on the center 

square and left  to explore the fl oor for 5 min. Activities were manually 

recorded over a 5 min-period by a trained observer. Th e open fi eld 

maze was cleaned between each rat using 70 % ethyl alcohol. 

On the whole, the behaviors scored in our study included: Line 

crossing or locomotion (number of squares crossed): Frequency with 

which the rats crossed one of the grid lines with all four paws. Center 

square duration: Duration of time the rat spent in the central square; 

Rearing: Frequency with which the rats stood on their hind legs in the 

maze; Rearing against a wall: Frequency with which the rat stood on 

their hind legs against a wall of the open fi eld; Grooming: Frequency 

and duration of time the animal spent licking or scratching itself 
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while stationary; Center Square Entries: Frequency with which the rat 

crossed one of the red lines with all four paws into the central square. 

Defecation: number of fecal boli produced; Urination: number of 

puddles or streaks of urine [51]. 

STATISTICAL ANALYSIS

All the data were expressed as mean ± S.E.M. and analyzed using 

GraphPad Prism Statistics  soft ware package (version 6). Diff erences 

within experimental groups in immobility time and locomotors 

activity were analyzed by one-way Analysis Of Variance (ANOVA), 

whereas each of between groups diff erences (the interaction between 

clofi brate and the corresponding interventions) were analyzed by 

two-way ANOVA, both was followed by Tukey’s posttest. P < 0.05 

was considered statistically signifi cant in all experiments.

RESULTS

Effect of clofi brate on FST and OFT

As can be seen in fi gure 1, three active behaviors, swimming, 

climbing and diving as well as the active behavior immobility were 

measured in the animals exposed to fi ve min FST. Clofi brate (300 mg/

kg, p.o.) increased swimming time in a signifi cant manner (P < 0.001) 

and as a result, reduced the immobility period (P < 0.001). FLX (10 

mg/kg, i.p.) also exerted a marked increase in the swimming measure 

and signifi cantly decreased the immobility time (P < 0.001). On the 

other hand, the administration of DMI (10 mg/kg, i.p.) increased the 

climbing behavior; however, it did not aff ect the immobility measure 

(P < 0.001). Further, the drugs did not infl uence the diving behavior 

(Figure 1).

Th e results of OFT are demonstrated in Fig. 2. Th e results of 

the fi ve behaviors were recorded in the animals during the fi ve min 

session: number of crossings, number of rearing to the wall, number 

of rearing, number of entering to the central square, number of 

grooming. Th e results indicated that clofi brate (300 mg/kg, p.o.) 

markedly reduced the number of rearing (P < 0.05) and the number of 

rearing to the wall (P < 0.05). DMI (10 mg/kg, i.p.) exert a signifi cant 

reduction on number of grooming (P < 0.01). 

Figure 3 illustrates the number of defection and urination in 

OFT. Th ere is not any signifi cant diff erence between groups.
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Figure 1: Effect of clofi brate (300 mg/kg, p.o.) on behavioral parameters, swimming, climbing and diving in FST. Results are mean counts ± SEM acquired by 
behavioral sampling (each counts corresponds to a 5 sec. interval). ***signifi cantly different from saline (P < 0.001). ###signifi cantly different from olive oil (P 
< 0.001).
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DISCUSSION

In this study, we demonstrated that clofi brate, a PPAR-α receptors 

agonist, may attenuate the behavioral despair associated with forced 

swim exposure and also provided direct evidence further a role for 

PPAR-α receptor mediating this central eff ect was suggested for the 

fi rst time. Sub-chronic clofi brate administration represented this 

protective eff ect reducing the immobility period and increasing the 

swimming period in the FST without aff ecting climbing and diving 

behaviors. 

In the OFT, clofi brate also showed its activity by a marked 

reduction in number of the rearing and rearing to the wall which 

are mentioned as depression-like behaviors. In addition, only DMI 
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Figure 2: Effect of clofi brate (300 mg/kg, p.o.) on behavioral parameters, crossings, rearing to wall, rearing, entering to the central square and grooming in OFT. 
Results are mean counts ± SEM over a 5-min period. **signifi cantly different from saline (P < 0.01). #signifi cantly different from olive oil (P < 0.05).
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Figure 3: Effect of clofi brate (300 mg/kg, p.o.) on digestive parameters, defection and urination in OFT. Results are mean counts ± SEM over a 5-min period. 
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reduced the number of grooming in this test and grooming behavior 

is a displacement response and is expected to be displayed in a novel 

environment [52]. Furthermore, this clofi brate eff ect could not be 

attributed to increase in the locomotor activity and it did not infl uence 

the generalized locomotor activity of the animals on the whole. 

Th e pattern of behavioral eff ects produced by the antidepressant 

drugs suggested that enhancement of NE neurotransmission is 

related to climbing in the FST and that enhancement of 5-HT 

neurotransmission is related to swimming in the test [41]. Clofi brate 

in this study increased swimming comparable with FLX; therefore, 

the possibility that the serotonergic system is involved in the eff ect of 

clofi brate should not be ignored. Consistent with our experiment, it 

was found that antidepressant drugs such as DMI which inhibit NE 

reuptake and we used in our study, eff ectively reduced the immobility 

and selectively increased the climbing behavior without aff ecting the 

swimming [53,54], whereas FLX which we used in our study, works 

through the serotonin system, reduced the immobility and selectively 

increased the swimming, without aff ecting the climbing [55-57]. 

Climbing and diving behaviors were inversely correlated with the 

behavioral despair and therefore with the immobility [54].

According to previous studies, it is shown that PPAR-γ receptors 

are associated with the process of attenuation of depression [58]. 

Previously it was shown that PPAR-γ is expressed in restricted areas 

of the brain in rats such as the hippocampus, basal ganglia, frontal 

cortex, the hypothalamus and pituitary [59,60] which are known to 

be involved in depression [61,62]. Th e antidepressant- like eff ect of 

PPAR-γ agonists is demonstrated for the fi rst time by pioglitazone, a 

PPAR-γ agonist, in a 55-year-old female who had severe unresponsive 

depression [63]. Furthermore, antidepressant-like eff ect of 

pioglitazone in the forced swimming test in mice has been shown 

and the role of PPAR-γ receptors stated [30]. NP031115, a novel 

TZDs, exerts antidepressant-like eff ect in mice, likely by inhibiting 

Glycogen Synthase Kinase-3 (GSK-3) and increasing PPAR-γ activity 

[58]. Rosiglitazone (RTZ), another TZDs and a PPAR-γ agonist, is 

also shown to have antidepressant-like eff ects in mice [64]. Previous 

studies have demonstrated that RTZ might improve learning and 

memory in both human and animal models [65-67]. 

Consistent with our study, swimming behavior was the most 

sensitive behavioral response to FLX [50,56]. Th e eff ect remains in 

agreement with the data published previously [68,69] which indicated 

that drugs aff ecting noradrenergic system modify rather climbing 

behavior, without any signifi cant changes in the swimming. Indeed, 

the involvement of 5-HT vs. NE systems in action mechanism of 

SSRIs vs. NE Reuptake Inhibitors (NRIs) in the modifi ed FST was 

shown by Page, et al. [53]. Th e modifi ed FST diff erentiated swimming 

behavior, which was sensitive to SSRIs and 5-HT receptor agonists, 

and climbing behavior, which was sensitive to TCAs and drugs 

with selective eff ects on catecholamine transmission [41, 70]. Active 

behaviors in the rat forced swimming test diff erentially produced by 

serotonergic and noradrenergic antidepressants [41]. DMI, increases 

rather climbing, while SSRIs – rather swimming behavior [71].

In agreement with a study in which DMI is well-known as potent 

and selective inhibitor of NE reuptake [72], we also observed increase 

in the climbing behavior. Porsolt et al suggested that DMI shortened 

immobility more than did two selective serotonin reuptake inhibitors, 

citaloperam and FLX [35]. However in our study, FLX and clofi brate 

were able to reduce the immobility time signifi cantly. 

Stretch attend postures are “risk-assessment” behaviors which 

indicate that the animal is hesitant to move from its present 

location to a new position [73] and thus a high frequency of these 

postures indicates a higher level of anxiety. Grooming behavior is 

a displacement response and is expected to be displayed in a novel 

environment [52]. Th erefore, grooming behavior should decrease 

with repeated exposure to the testing apparatus. Defecation and 

urination are oft en used as measures of anxiety, however; the validity 

of defecation as a measure of anxiety has been questioned [74]. 

Hall [75] describes defecation and urination as indices of anxiety in 

rodents. He argues that the animal will have reduced locomotion in 

a novel environment, nevertheless; the autonomic nervous system 

will be activated which will increase defecation in this noxious 

arena. However, Bindra and Th ompson [76] argue that there is no 

signifi cant relation between fearfulness and urination and defecation 

as measured in the OFT. Repeated exposure to open fi eld apparatus 

resulted in time-dependent changes in behavior [77]. At fi rst, when 

the apparatus is novel to the animals, more fear-related behaviors 

(such as stretch attends and activity in the corners and walls of 

the open fi eld) are displayed. However, with repeated trials, more 

exploration and locomotor activity (such as rearing and line crosses 

as well as more central square activity) is observed [78]. 

Eff ects of fenofi brate, a PPAR-α agonist, on acute and short-term 

consequences of brain ischemia indicated that fenofi brate modulates 

mechanisms involved in neurorepair and amyloid cascade. PPAR-α 

agonists could check the key points of a potential disease-modifying 

eff ect in stroke. Fenofi brate administration during the acute phase 

of experimentally induced brain ischemia has benefi cial immediate 

and short-term neuroprotective eff ects [31]. Also, fenofi brate was 

neuroprotective in Parkinson’s disease-induced cognitive impairment 

in rats [32]. Acute and chronic PPAR-α agonists, including the 

clinically available fenofi brate, reduce nicotine-induced behavioral 

and Electroencephalographic (EEG) seizure expression and 

abolish nicotine-induced enhancement of Spontaneous Inhibitory 

Postsynaptic Currents (sIPSCs) in FCx pyramidal neurons [79].

OEA acting as a PPAR-α agonist, facilitates memory 

consolidation through noradrenergic activation of the basolateral 

amygdala (BLA) complex, a mechanism that is also critically involved 

in memory enhancement induced by emotional arousal [33]. OEA 

administration can modulate the cognitive defi cits induced by 3, 

4-Methylenedioxymethamphetamine (MDMA) in a Dopamine 

Transporter (DAT)-independent manner [34].

CONCLUSION

On the whole, one limitation of our study is that low doses of 

clofi brate were not examined in order to identify the initial dose which 

demonstrates this neuroprotective eff ect. As a consequence, further 

studies will be required to fi nd a dose- response relationship for 

clofi brate. Moreover, selective PPAR-α antagonists could have been 

employed to clearly strengthen the involvement of PPAR-α receptors. 

Additionally, as we mentioned the possibility that clofi brate would 

be a serotonergic antidepressant which increases the active behavior, 

swimming, resemble to FLX [80], a 5-HT-related compound, a 5HT 

antagonist would be appropriate to determine if 5-HT depletion 

before clofi brate administration would block the anti-immmobility 

eff ect of clofi brate in the FST; for example using a tryptophan 

hydroxylase inhibitor, fenclonine, Para-Chlorophenylalanine 

(PCPA). On the other hand, other PPAR-α receptor agonists are 

suggested to be examined. To conclude, we have shown for the 
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fi rst time that clofi brate as a PPAR-α receptor agonist might have 

neuroprotective eff ect in behavioral despair.
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