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INTRODUCTION

CIRP, also called cold-inducible RNA binding protein, is a RNA-

binding protein that was fi rst identifi ed as a UV-inducible transcript 

in CHO cells more than two decades ago [1]. Since then, CIRP was 

characterized as a cold-shock protein that can be induced aft er 

exposure to a moderate cold-shock in diff erent species ranging from 

amphibians to humans. Expression of CIRP can also be regulated by 

hypoxia, glucose deprivation, heat stress, H
2
O

2 
and infl ammatory 

cytokines [2], suggesting that CIRP is  a general stress-response 

protein. In response to stress, CIRP can migrate from the nucleus to 

the cytoplasm and regulate mRNA stability through its binding site 

on the 3’-UTR of its targeted mRNAs [3]. 

CIRP exerts its function by preferentially targeting translation 

of specifi c mRNA transcripts harboring its RNA signature motif 

in response to cellular stress. In the cytosol, CIRP binds to the 

3’-untranslated region (3’-UTR) of RNA transcripts on ribosomal 

fractions and increases the mRNAs stability, consequently enhancing 

translation [1,4-6]. Currently, CIRP has been demonstrated to 

positively regulate the translation of genes involved in DNA 

repair [1,5,7], cellular redox metabolism [6], adhesion molecules 

[8], circadian mRNAs [9], reproduction-related genes in testis 

[4], telomerase components [10], HIF-1α [11], and a number of 

transcripts associated with the general translational machinery [11]. 

In addition to the positively post-transcriptional regulation, a negative 

role of CIRP in translation has also been reported. In addition; CIRP 

could also post-transcriptional and negatively modulate expression 

of the α-subunits of I
to

 channels in cardiomyocytes, aff ecting 

cardiac repolarization [12]. Th rough the regulation of its targets, 

CIRP has been implicated in multiple cellular processes such as cell 

proliferation, cell survival, and circadian modulation.

THE ROLE OF CIRP IN PROSTATE CANCER

 CIRP upregulation has been observed in a large number of solid 

tumors in human, such as colon cancer, central nervous system-

related tumors, and liver-pancreas carcinomas, human melanoma, 

prostate, breast and colon cancers, compared to normal adjacent 

tissue [11,13], implicating a common role of CIRP in cancer 

progression. Th e evidence supporting a key role of CIRP in tumor 

progression comes from the study that uses tumor xenograft  animal 

models to test the eff ects of CIRP defi ciency on cancer growth. In 

both melanoma and breast cancer xenograft  models, downregulation 

of CIRP could decrease tumor proliferation, invasion and migration 

[11]. Th ese data suggest a malignant role of CIRP in cancer, and CIRP 

has been regarded as a new pro-oncogene in cancer [14], although the 

specifi c role of CIRP upregulation in each kind of cancer still needs 

to be defi ned.

Recently studies also implicate a vital role of CIRP in prostate cancer 

progression. Clinical studies showed that CIRP is overexpression in 

prostate cancer, with the mRNA upregulation in 36% prostate cancer, 

and the protein upregulation in 40 to 60% prostate cancer, compared 

with normal adjacent tissues [11,13]. In-vitro studies showed that 

CIRP is abundantly expressed in prostate cancer cell lines such as 

PC-3 and LNCaP cells, and knocking down of CIRP by siRNA can 

signifi cantly inhibit cell growth and colony formation in these cells 

[15]. In addition, CIRP downregulation can enhance the therapeutic 

response of prostate cancer cells to chemotherapy in-vitro [15]. Th ese 

results suggest an important role of CIRP in prostate cell proliferation 

and the therapeutic potential of targeting CIRP in prostate cancer.

Mechanistic study found that downregulation of CIRP of prostate 

cancer cell lines impedes p53 activation and the subsequent p21 

expression, both of which have been shown to render DNA damage 

repair [15,16], suggesting that CIRP downregulation inhibit DNA 

repair in prostate cancer. As CIRP can bind to and stabilizes the 

transcripts of pro-survival genes harboring its RNA signature motif in 

their 3’-UTR, CIRP may promote tumor growth by coordinating the 

translation of selected transcripts associated with proliferation and 

survival in prostate cancer cells, which needs further investigation. 

FURTHER PERSPECTIVE

Although CIRP showed potential role in regulation prostate 

cancer, further study is needed to determine the role of CIRP in vivo 

and the clinical signifi cance of CIRP in prostate cancer in human. 

Xenograft  animal models of prostate cancer may be valuable to 

evaluate the eff ects of CIRP downregulation on tumor growth in vivo. 

Correlation of CIRP expression level with the characters of patients 

with prostate cancer, such as tumor grade and survival time, may 

help to identify CIRP as new prognostic markers of prostate cancer 

progression. 
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